A systematic study of fabrication and effect of post-deposition processing on the optical and structural features of silicon-rich hydrogenated amorphous silicon nitride thin films deposited by Hg-sensitized Photo-Chemical Vapour Deposition technique is presented. Both deposition parameters and post-deposition thermal treatment resulted into substantial change in the refractive index associated with the densification of the film. Our studies reveal that the presence of hydrogen and its out-diffusion upon thermal treatment play a crucial role in the overall structural evolution, specially the stabilization of individual phases such as Si and Si3N4.
View Article and Find Full Text PDFNeutron, synchrotron x-ray powder diffraction and dielectric studies have been performed for morphotropic phase boundary (MPB) compositions of the (1-x)Na(1/2)Bi(1/2)TiO(3)-xPbTiO(3) system. At room temperature, the MPB compositions (0.10
We have studied the effect of rapid thermal annealing (RTA) in the context of phase evolution and stabilization in hydrogenated amorphous silicon nitride (a-SiN(x):H) thin films having different stoichiometries, deposited by an Hg-sensitized photo-CVD (chemical vapor deposition) technique. RTA-treated films showed substantial densification and increase in refractive index. Our studies indicate that a mere increase in flow of silicon (Si)-containing gas would not result in silicon-rich a-SiN(x):H films.
View Article and Find Full Text PDF