Publications by authors named "Sara Zanivan"

The immunoregulatory cytokine TGF-β is pleiotropic due to the near-ubiquitous expression of the TGF-β receptors TβRI and TβRII on diverse cell types. The helminth parasite Heligmosomoides polygyrus has convergently evolved a family of TGF-β mimics (TGMs) that bind both these receptors through domains 1-3 of a 5-domain protein. One member of this family, TGM4, differs from TGF-β in acting in a cell-specific manner, failing to stimulate fibroblasts, but activating SMAD phosphorylation in macrophages.

View Article and Find Full Text PDF

The limited availability of therapeutic options for patients with triple-negative breast cancer (TNBC) contributes to the high rate of metastatic recurrence and poor prognosis. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation and counteracted by the antioxidant activity of the selenoprotein GPX4. Here, we show that TNBC cells secrete an anti-ferroptotic factor in the extracellular environment when cultured at high cell densities but are primed to ferroptosis when forming colonies at low density.

View Article and Find Full Text PDF
Article Synopsis
  • Intercellular communication in solid tumors, particularly via cancer-associated fibroblasts (CAFs), plays a key role in tumor growth and spreading.
  • Research demonstrated that CAFs with a myofibroblast phenotype release extracellular vesicles that transfer proteins to endothelial cells (ECs), influencing their interactions with immune cells.
  • Mass spectrometry identified specific proteins, such as THY1, that enhance monocyte adhesion to ECs, suggesting that CAF-derived matrix-bound extracellular vesicles are crucial in shaping tumor interactions with surrounding cells.
View Article and Find Full Text PDF

Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined.

View Article and Find Full Text PDF

Macrophages are fundamental cells of the innate immune system that support normal haematopoiesis and play roles in both anti-cancer immunity and tumour progression. Here we use a chimeric mouse model of chronic myeloid leukaemia (CML) and human bone marrow (BM) derived macrophages to study the impact of the dysregulated BM microenvironment on bystander macrophages. Utilising single-cell RNA sequencing (scRNA-seq) of Philadelphia chromosome (Ph) negative macrophages we reveal unique subpopulations of immature macrophages residing in the CML BM microenvironment.

View Article and Find Full Text PDF

The mitochondrial genome (mtDNA) encodes essential machinery for oxidative phosphorylation and metabolic homeostasis. Tumor mtDNA is among the most somatically mutated regions of the cancer genome, but whether these mutations impact tumor biology is debated. We engineered truncating mutations of the mtDNA-encoded complex I gene, Mt-Nd5, into several murine models of melanoma.

View Article and Find Full Text PDF

DNA damage represents a challenge for cells, as this damage must be eliminated to preserve cell viability and the transmission of genetic information. To reduce or eliminate unscheduled chemical modifications in genomic DNA, an extensive signaling network, known as the DNA damage response (DDR) pathway, ensures this repair. In this work, and by means of a proteomic analysis aimed at studying the STIM1 protein interactome, we have found that STIM1 is closely related to the protection from endogenous DNA damage, replicative stress, as well as to the response to interstrand crosslinks (ICLs).

View Article and Find Full Text PDF

High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy.

View Article and Find Full Text PDF

The murine helminth parasite expresses a family of modular proteins which, replicating the functional activity of the immunomodulatory cytokine TGF-β, have been named TGM (TGF-β Μimic). Multiple domains bind to different receptors, including TGF-β receptors TβRI (ALK5) and TβRII through domains 1-3, and prototypic family member TGM1 binds the cell surface co-receptor CD44 through domains 4-5. This allows TGM1 to induce T lymphocyte Foxp3 expression, characteristic of regulatory (Treg) cells, and to activate a range of TGF-β-responsive cell types.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are generated by all cells and systemic administration of allogenic EVs derived from epithelial and mesenchymal cells have been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cells derived EVs can be modified to acquire the capacity to induce immune response, we engineered 293T EVs to harbor the immunomodulatory CD80, OX40L and PD-L1 molecules. We demonstrated abundant levels of these proteins on the engineered cells and EVs.

View Article and Find Full Text PDF

Proline is a nonessential amino acid, and its metabolism has been implicated in numerous malignancies. Together with a direct role in regulating cancer cells' proliferation and survival, proline metabolism plays active roles in shaping the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) display high rates of proline biosynthesis to support the production of collagen for the extracellular matrix (ECM).

View Article and Find Full Text PDF

Dysregulation of the PI3K/AKT pathway is a common occurrence in high-grade serous ovarian carcinoma (HGSOC), with the loss of the tumour suppressor PTEN in HGSOC being associated with poor prognosis. The cellular mechanisms of how PTEN loss contributes to HGSOC are largely unknown. We here utilise time-lapse imaging of HGSOC spheroids coupled to a machine learning approach to classify the phenotype of PTEN loss.

View Article and Find Full Text PDF

The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented. While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages, whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade.

View Article and Find Full Text PDF

Background: Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac β-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing.

View Article and Find Full Text PDF

Bicarbonate transport is a pre-existing mechanism of pH regulation in pancreatic ductal cells. In a recent study, Cappellesso et al. demonstrated that pancreatic ductal adenocarcinoma metabolic rewiring creates an acidic environment, enhanced by bicarbonate import into cancer cells via SLC4A4.

View Article and Find Full Text PDF

The glycocalyx component and sialomucin podocalyxin (PODXL) is required for normal tissue development by promoting apical membranes to form between cells, triggering lumen formation. Elevated PODXL expression is also associated with metastasis and poor clinical outcome in multiple tumor types. How PODXL presents this duality in effect remains unknown.

View Article and Find Full Text PDF

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs.

View Article and Find Full Text PDF

Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells.

View Article and Find Full Text PDF

The MICAL1 monooxygenase is an important regulator of filamentous actin (F-actin) structures. Although MICAL1 has been shown to be regulated via protein-protein interactions at the autoinhibitory carboxyl terminus, a link between actin-regulatory RHO GTPase signaling pathways and MICAL1 has not been established. We show that the CDC42 GTPase effector PAK1 associates with and phosphorylates MICAL1 on two serine residues, leading to accelerated F-actin disassembly.

View Article and Find Full Text PDF

Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors.

View Article and Find Full Text PDF

The formation of a functional blood vessel network relies on the ability of endothelial cells (ECs) to dynamically rearrange their adhesive contacts in response to blood flow and guidance cues, such as vascular endothelial growth factor-A (VEGF-A) and class 3 semaphorins (SEMA3s). Neuropilin 1 (NRP1) is essential for blood vessel development, independently of its ligands VEGF-A and SEMA3, through poorly understood mechanisms. Grounding on unbiased proteomic analysis, we report here that NRP1 acts as an endocytic chaperone primarily for adhesion receptors on the surface of unstimulated ECs.

View Article and Find Full Text PDF

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs.

View Article and Find Full Text PDF

Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux.

View Article and Find Full Text PDF