Publications by authors named "Sara Xapelli"

Article Synopsis
  • Adenosine acts as a natural anticonvulsant through adenosine receptors (AR), but developing drugs that target these receptors has been challenging due to potential cardiac side effects.
  • The study examined the effects of a selective AR agonist called MRS5474 on excitatory and inhibitory signals in the hippocampus, using both rodent and human tissue samples.
  • Results showed that MRS5474 does not affect normal excitatory signals but enhances GABAergic currents in tissue from patients with epilepsy, suggesting its potential as a targeted antiseizure medication through activation of AR in epileptic conditions.
View Article and Find Full Text PDF

Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells.

View Article and Find Full Text PDF

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments.

View Article and Find Full Text PDF

Postnatal neurogenesis has been shown to rely on the endocannabinoid system. Here we aimed at unravelling the role of Cannabidivarin (CBDV), a non-psychoactive cannabinoid, with high affinity for the non-classical cannabinoid receptor TRPV1, on subventricular zone (SVZ) postnatal neurogenesis. Using the neurosphere assay, SVZ-derived neural stem/progenitor cells (NSPCs) were incubated with CBDV and/or 5'-Iodoresinferotoxin (TRPV1 antagonist), and their role on cell viability, proliferation, and differentiation were dissected.

View Article and Find Full Text PDF

The purinergic system includes P1 and P2 receptors, which are activated by ATP and its metabolites. They are expressed in adult neuronal and glial cells and are crucial in brain function, including neuromodulation and neuronal signaling. As P1 and P2 receptors are expressed throughout embryogenesis and development, purinergic signaling also has an important role in the development of the peripheral and central nervous system.

View Article and Find Full Text PDF

Studies have correlated excessive S100B, a small inflammatory molecule, with demyelination and associated inflammatory processes occurring in multiple sclerosis. The relevance of S100B in multiple sclerosis pathology brought an emerging curiosity highlighting its use as a potential therapeutic target to reduce damage during the multiple sclerosis course, namely during inflammatory relapses. We examined the relevance of S100B and further investigated the potential of S100B-neutralizing small-molecule pentamidine in chronic experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

Neural stem cells (NSCs), crucial for memory in the adult brain, are also pivotal to buffer depressive behavior. However, the mechanisms underlying the boost in NSC activity throughout life are still largely undiscovered. Here, we aimed to explore the role of deacetylase Sirtuin 3 (SIRT3), a central player in mitochondrial metabolism and oxidative protection, in the fate of NSC under aging and depression-like contexts.

View Article and Find Full Text PDF

The increasing consumption of sugar and fat seen over the last decades and the consequent overweight and obesity, were recently linked with a deleterious effect on cognition and synaptic function. A major question, which remains to be clarified, is whether obesity in the elderly is an additional risk factor for cognitive impairment. We aimed at unravelling the impact of a chronic high caloric diet (HCD) on memory performance and synaptic plasticity in aged rats.

View Article and Find Full Text PDF

Cell survival during adult neurogenesis and the modulation of each step, namely, proliferation, lineage differentiation, migration, maturation, and functional integration of the newborn cells into the existing circuitry, is regulated by intrinsic and extrinsic factors. Transduction of extracellular niche signals triggers the activation of intracellular mechanisms that regulate adult neurogenesis by affecting gene expression. While the intrinsic factors include transcription factors and epigenetic regulators, the extrinsic factors are molecular signals that are present in the neurogenic niche microenvironment.

View Article and Find Full Text PDF

Neurogenesis is maintained in the mammalian brain throughout adulthood in two main regions: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Adult neurogenesis is a process composed of multiple steps by which neurons are generated from dividing adult neural stem cells and migrate to be integrated into existing neuronal circuits. Alterations in any of these steps impair neurogenesis and may compromise brain function, leading to cognitive impairment and neurodegenerative diseases.

View Article and Find Full Text PDF

Background: The use of Alzheimer's disease (AD) models obtained by intracerebral infusion of amyloid-β (Aβ) has been increasingly reported in recent years. Nonetheless, these models may present important challenges.

Objective: We have focused on canonical mechanisms of hippocampal-related neural plasticity to characterize a rat model obtained by an intracerebroventricular (icv) injection of soluble amyloid-β42 (Aβ42).

View Article and Find Full Text PDF

Adenosine A receptor (A R) activation modulates several brain processes, ranging from neuronal maturation to synaptic plasticity. Most of these actions occur through the modulation of the actions of the neurotrophin brain-derived neurotrophic factor (BDNF). In this work, we studied the role of A Rs in regulating postnatal and adult neurogenesis in the rat hippocampal dentate gyrus (DG).

View Article and Find Full Text PDF

Engineering brain organoids from human induced pluripotent stem cells (hiPSCs) is a powerful tool for modeling brain development and neurological disorders. Rett syndrome (RTT), a rare neurodevelopmental disorder, can greatly benefit from this technology, since it affects multiple neuronal subtypes in forebrain sub-regions. We have established dorsal and ventral forebrain organoids from control and RTT patient-specific hiPSCs recapitulating 3D organization and functional network complexity.

View Article and Find Full Text PDF

Neurotrophins are a well-known family of neurotrophic factors that play an important role both in the central and peripheral nervous systems, where they modulate neuronal survival, development, function and plasticity. Brain-derived neurotrophic factor (BDNF) possesses diverse biological functions which are mediated by the activation of two main classes of receptors, the tropomyosin-related kinase (Trk) B and the p75 neurotrophin receptor (p75). The therapeutic potential of BDNF has drawn attention since dysregulation of its signalling cascades has been suggested to underlie the pathogenesis of both common and rare diseases.

View Article and Find Full Text PDF

Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime.

View Article and Find Full Text PDF

Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through AR it potentiates BDNF synaptic actions in healthy animals.

View Article and Find Full Text PDF

Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer's disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.

View Article and Find Full Text PDF

The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage.

View Article and Find Full Text PDF

The neurosphere assay is an extremely useful in vitro technique for studying the inherent properties of neural stem/progenitor cells (NSPCs) including proliferation, self-renewal and multipotency. In the postnatal and adult brain, NSPCs are mainly present in two neurogenic niches: the subventricular zone (SVZ) lining the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus (DG). The isolation of the neurogenic niches from postnatal brain allows obtaining a higher amount of NSPCs in culture with a consequent advantage of higher yields.

View Article and Find Full Text PDF

With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches.

View Article and Find Full Text PDF

The adult mammalian brain can produce new neurons in a process called adult neurogenesis, which occurs mainly in the subventricular zone (SVZ) and in the hippocampal dentate gyrus (DG). Brain-derived neurotrophic factor (BDNF) signaling and cannabinoid type 1 and 2 receptors (CB1R and CB2R) have been shown to independently modulate neurogenesis, but how they may interact is unknown. We now used SVZ and DG neurosphere cultures from early (P1-3) postnatal rats to study the CB1R and CB2R crosstalk with BDNF in modulating neurogenesis.

View Article and Find Full Text PDF