Publications by authors named "Sara Vliet"

Several adverse outcome pathways (AOPs) have linked molecular initiating events like aromatase inhibition, androgen receptor (AR) agonism, and estrogen receptor (ER) antagonism to reproductive impairment in adult fish. Estrogen receptor agonists can also cause adverse reproductive effects, however, the early key events (KEs) in an AOP leading to this are mostly unknown. The primary aim of this study was to develop hypotheses regarding the potential mechanisms through which exposure to ER agonists might lead to reproductive impairment in female fish.

View Article and Find Full Text PDF

The U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP) is tasked with assessing chemicals for their potential to perturb endocrine pathways, including those controlled by androgen receptor (AR).

View Article and Find Full Text PDF

The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool is a fast, freely available, online screening application that allows researchers and regulators to extrapolate toxicity information across species. For biological targets in model systems such as human cells, mice, rats, and zebrafish, toxicity data are available for a variety of chemicals. Through the evaluation of protein target conservation, this tool can be used to extrapolate data generated from such model systems to thousands of other species lacking toxicity data, yielding predictions of relative intrinsic chemical susceptibility.

View Article and Find Full Text PDF

Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an "animal-free" testing paradigm worldwide.

View Article and Find Full Text PDF

Computational screening for potentially bioactive molecules using advanced molecular modeling approaches including molecular docking and molecular dynamic simulation is mainstream in certain fields like drug discovery. Significant advances in computationally predicting protein structures from sequence information have also expanded the availability of structures for nonmodel species. Therefore, the objective of the present study was to develop an analysis pipeline to harness the power of these bioinformatics approaches for cross-species extrapolation for evaluating chemical safety.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are pervasive pollutants in aquatic ecosystems, and developing fish embryos are especially sensitive to PAH exposure. Exposure to crude oil or phenanthrene (a reference PAH found in oil) produces an array of gross morphological abnormalities in developing fish embryos, including cardiotoxicity. Recently, studies utilizing transcriptomic analyses in several oil-exposed fish embryos found significant changes in the abundance of transcripts involved in cholesterol biosynthesis.

View Article and Find Full Text PDF

Sensitivity to potential endocrine disrupting chemicals in the environment varies across species and is influenced by sequence conservation of their nuclear receptor targets. Here, we evaluated a multiplexed, in vitro assay testing receptors relevant to endocrine and metabolic disruption from five species. The TRANS-FACTORIAL™ system of human nuclear receptors was modified to include additional species: mouse (Mus musculus), frog (Xenopus laevis), zebrafish (Danio rerio), chicken (Gallus gallus), and turtle (Chrysemys picta).

View Article and Find Full Text PDF

Many coastal systems have been experiencing the effects of non-chemical and chemical anthropological stressors through respective increases in surface water temperatures and rainstorm-derived runoff events of pyrethroid pesticide movement into waterways such as the San Francisco Bay-Delta. Salmonid populations in the Bay-Delta have been dramatically declining in recent decades. Therefore, the aim of this study was to investigate the interactive effects of bifenthrin, a pyrethroid insecticide, and increasing water temperatures on targeted neuroendocrine and behavioral responses in Chinook salmon (Oncorhynchus tshawytscha) parr (10- month post-hatch).

View Article and Find Full Text PDF

Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have highlighted the broad bioactivity of niclosamide across diverse mechanisms of action. As a result, niclosamide is being evaluated for a range of alternative drug-repurposing applications, including the treatment of cancer, bacterial infections, and Zika virus.

View Article and Find Full Text PDF

Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production-volume organophosphate flame retardant (OPFR) that induces epiboly defects during zebrafish embryogenesis, leading to the disruption of dorsoventral patterning. Therefore, the objectives of this study were to (1) identify the potential mechanisms involved in TDCIPP-induced epiboly defects and (2) determine whether coexposure to triphenyl phosphate (TPHP)-an OPFR commonly detected with TDCIPP-enhances or mitigates epiboly defects. Although TDCIPP-induced epiboly defects were not associated with adverse impacts on cytoskeletal protein abundance in situ, the coexposure of embryos to TPHP partially blocked TDCIPP-induced epiboly defects.

View Article and Find Full Text PDF

Bifenthrin (BF) is a pyrethroid insecticide widely used in urban and agricultural applications. Previous studies in embryos of zebrafish have shown that BF can affect estradiol biosynthesis and the dopaminergic system. To examine the role of the estrogen receptor (ER) in the endocrine effects of BF, embryos were exposed for 96 h to a mixture of 0.

View Article and Find Full Text PDF

Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have revealed that niclosamide exhibits diverse mechanisms of action and, as a result, demonstrates promise for a number of applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, the objective of this study was to investigate the mechanism of niclosamide toxicity during early stages of embryonic development.

View Article and Find Full Text PDF

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is an organophosphate flame retardant used around the world. Within zebrafish, we previously showed that initiation of TDCIPP exposure during cleavage (0.75 h post-fertilization, hpf) results in epiboly disruption at 6 hpf, leading to dorsalized embryos by 24 hpf, a phenotype that mimics the effects of dorsomorphin (DMP), a bone morphogenetic protein (BMP) antagonist that dorsalizes embryos in the absence of epiboly defects.

View Article and Find Full Text PDF

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) results in genome-wide alterations in methylation during cleavage (2 hpf) as well as epiboly delay or arrest (at higher concentrations) during late-blastula and early-gastrula (4-6 hpf).

View Article and Find Full Text PDF

Spontaneous activity represents an early, primitive form of motor activity within zebrafish embryos, providing a potential readout for identification of neuroactive compounds. However, despite use as an endpoint in chemical screens around the world, the predictive power and limitations of assays relying on spontaneous activity remain unclear. Using an improved high-content screening assay that increased throughput from 384 to 3072 wells per week, we screened a well-characterized library of 1280 pharmacologically active compounds (LOPAC) - 612 of which target neurotransmission - to identify which targets are detected using spontaneous activity as a readout.

View Article and Find Full Text PDF

Background: The case fatality rate of severely malnourished children during inpatient treatment is high and mortality is often associated with diarrhea. As intestinal carbohydrate absorption is impaired in severe acute malnutrition (SAM), differences in dietary formulations during nutritional rehabilitation could lead to the development of osmotic diarrhea and subsequently hypovolemia and death. We compared three dietary strategies commonly used during the transition of severely malnourished children to higher caloric feeds, i.

View Article and Find Full Text PDF
Article Synopsis
  • - Diarrhea is a significant issue for children with severe acute malnutrition (SAM), but the reasons behind it and its effects on health remain uncertain.
  • - This study looked at 79 hospitalized children in Malawi, finding that younger kids with SAM were more likely to die, had higher rates of diarrhea, and exhibited elevated levels of inflammation markers like calprotectin.
  • - The research concluded that while diarrhea and inflammation are linked to higher mortality in these children, the presence of specific intestinal pathogens was not directly responsible for these outcomes.
View Article and Find Full Text PDF