Pro-inflammatory cytokines, like interleukin-1 beta and interferon gamma, are known to activate signalling pathways causing pancreatic beta cell death and dysfunction, contributing to the onset of diabetes. Targeting cytokine signalling pathways offers a potential strategy to slow or even halt disease progression, reducing reliance on exogenous insulin and improving glucose regulation. This study explores the protective and proliferative effects of breitfussin C (BfC), a natural compound isolated from the Arctic marine hydrozoan Thuiaria breitfussi, on pancreatic beta cells exposed to pro-inflammatory cytokines.
View Article and Find Full Text PDFDifferences in pancreatic islet susceptibility during type 1 diabetes development may be explained by interislet variations. This study aimed to investigate if heterogeneities in vascular support and metabolic activity in rat and human islets may explain why some islets are attacked earlier than other islets. In rats, highly blood perfused islets were identified by injection of microspheres into the ascending aorta, whereas a combination of anterograde and retrograde injections of microspheres into pancreas was used to determine the islet vascular drainage system.
View Article and Find Full Text PDFLow-oxygenated and dormant islets with a capacity to become activated when needed may play a crucial role in the complex machinery behind glucose homeostasis. We hypothesized that low-oxygenated islets, when not functionally challenged, do not rapidly cycle between activation and inactivation but are a stable population that remain low-oxygenated. As this was confirmed, we aimed to characterize these islets with regard to cell composition, vascular density, and endocrine cell proliferation.
View Article and Find Full Text PDFAims/hypothesis: Genetic studies show coupling of genes affecting beta cell function to type 1 diabetes, but hitherto no studies on whether beta cell dysfunction could precede insulitis and clinical onset of type 1 diabetes are available.
Methods: We used 40-day-old BioBreeding (BB) DRLyp/Lyp rats (a model of spontaneous autoimmune type 1 diabetes) and diabetes-resistant DRLyp/+ and DR+/+ littermates (controls) to investigate beta cell function in vivo, and insulin and glucagon secretion in vitro. Beta cell mass was assessed by optical projection tomography (OPT) and morphometry.
Islet amyloid and beta cell death in type 2 diabetes are heterogeneous events, where some islets are affected early in the disease process, whereas others remain visibly unaffected. This study investigated the possibility that inter-islet functional and vascular differences may explain the propensity for amyloid accumulation in certain islets. Highly blood-perfused islets were identified by microspheres in human islet amyloid polypeptide expressing mice fed a high-fat diet for three or 10 months.
View Article and Find Full Text PDFPancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes.
View Article and Find Full Text PDFAims/hypothesis: Highly blood-perfused islets have been observed to be the most functional islets in the native pancreas. We hypothesised that differences in vascular support of islets in donor pancreases influence their susceptibility to cellular stress and capacity for vascular engraftment after transplantation.
Methods: Highly blood-perfused islets in rats were identified by injection of microspheres into the ascending aorta before islet isolation.
The combination of capillary electrophoresis (CE) with mass spectrometry (MS) constitutes a powerful microanalytical system for the analysis of biological samples. The anionic and hydrophobic surface of the fused-silica capillary is, however, known to cause severe analyte-wall interactions in protein analysis. In order to control surface properties and eliminate protein adsorption, a capillary coating can be applied.
View Article and Find Full Text PDFThis work presents the development of a general and fast method for metabolic profiling of urine, using capillary electrophoresis-electrospray ionisation mass spectrometry (CE-ESIMS) and multivariate data analysis (DA). Human urine samples collected before and after ingestion of paracetamol were analysed at acidic and basic CE conditions, using both positive and negative ESI-MS detection. Analysis of the entire resulting data set, with no prior knowledge of the target compounds, using pair-wise 'fuzzy' correlation and eigenvalue analysis enabled the samples to be discriminated between on the basis of blank urine and urine collected after drug intake.
View Article and Find Full Text PDFCapillary electrophoresis (CE) was coupled off-line with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) for the analysis of proteins and peptides. CE fractions were collected directly on a matrix-coated MALDI target, using a sheath-flow interface. Protein adsorption during CE separations was prevented by coating the capillaries with the physically adsorbed, cationic polymer PolyE-323.
View Article and Find Full Text PDFA procedure for enhanced capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) of proteins is presented. The use of a newly presented capillary coating, PolyE-323, provided fast separations of typically a few minutes with high efficiency, good deactivation, and no bleeding into the mass spectrometer. Capillaries coated with PolyE-323 showed high stability over a range of pH 2-10, and tolerance towards methanol and acetonitrile, two modifiers commonly used in CE-ESI-MS.
View Article and Find Full Text PDFA novel positively charged polymer of quaternary ammonium substituted agarose (Q-agarose) has been synthesized and explored for use as a coating in capillary electrophoresis. The fast and simple coating procedure is based on a multi-site electrostatic interaction between the polycationic agarose polymer and the negatively charged fused-silica surface. By simply flushing fused-silica capillaries with hot polymer solution a positively charged, hydrophilic deactivation layer is achieved.
View Article and Find Full Text PDFA new polycationic coating for use in capillary electrophoresis has been developed that enables chemical modification of fused-silica capillary surfaces for analysis of compounds like basic proteins. The cationic polyamine, containing short aliphatic blocks of combined 2 and 3-carbon length, was physically adsorbed onto the negatively charged fused-silica surface through ionic interaction by flushing the capillary with a polyamine solution, followed by a self-stabilization step. The polyamine coated capillaries generated an anodal electroosmotic flow that was independent of pH in the investigated range of pH 4-8.
View Article and Find Full Text PDFA novel procedure for immobilization of liposomes inside fused-silica capillaries is demonstrated. First, the inner wall of the capillaries was coated with a positively charged polymer, composed of derivatized agarose. Subsequently, negatively charged liposomes were immobilized by electrostatic interaction on the polymer coating.
View Article and Find Full Text PDF