Publications by authors named "Sara Tucci"

Defects in mitochondrial fatty acid β-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent hypoglycemia, triheptanoin-a triglyceride composed of three heptanoates (C7) esterified with a glycerol backbone-can be used as a dietary treatment, since it is metabolized into precursors for gluconeogenesis.

View Article and Find Full Text PDF

Previous research suggests potential mitochondrial dysfunction and changes in fatty acid metabolism in a subgroup of individuals with autism spectrum disorder (ASD), indicated by higher lactate, pyruvate levels, and mitochondrial disorder prevalence. This study aimed to further investigate potential mitochondrial dysfunction in ASD by assessing blood metabolite levels linked to mitochondrial metabolism. Blood levels of creatine kinase (CK), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate, pyruvate, free and total carnitine, as well as acylcarnitines were obtained in 73 adults with ASD (47 males, 26 females) and compared with those of 71 neurotypical controls (NTC) (44 males, 27 females).

View Article and Find Full Text PDF

Riboflavin transporter 1 (RFVT1) deficiency is an ultrarare metabolic disorder due to autosomal dominant pathogenic variants in . The RFVT1 protein is mainly expressed in the placenta and intestine. To our knowledge, only five cases of RFVT1 deficiency from three families have been reported so far.

View Article and Find Full Text PDF

Background: Glycogen storage disease type Ia (GSDIa) is an inborn metabolic disorder caused by the deficiency of glucose-6-phospatase-α (G6Pase-α) leading to mitochondrial dysfunction. It remains unclear whether mitochondrial dysfunction is present in patients' peripheral blood mononuclear cells (PBMC) and whether dietary treatment can play a role. The aim of this study was to investigate mitochondrial function in PBMC of GSDIa patients.

View Article and Find Full Text PDF

Long-chain 3-hydroxyacyl-CoA deficiency (LCHADD) and mitochondrial trifunctional protein (MTPD) belong to a group of inherited metabolic diseases affecting the degradation of long-chain chain fatty acids. During metabolic decompensation the incomplete degradation of fatty acids results in life-threatening episodes, coma and death. Despite fast identification at neonatal screening, LCHADD/MTPD present with progressive neurodegenerative symptoms originally attributed to the accumulation of toxic hydroxyl acylcarnitines and energy deficiency.

View Article and Find Full Text PDF

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a recessive disorder of fatty acid beta-oxidation with variable phenotype. Patients may present during the neonatal period with lethal multi-organ failure or during adulthood with a myopathic phenotype. VLCADD is included in the Swedish newborn screening (NBS) program since 2010.

View Article and Find Full Text PDF

Medium-chain fatty acids (mc-FAs) are currently applied in the treatment of long-chain fatty acid oxidation disorders (lc-FAOD) characterized by impaired β-oxidation. Here, we performed lipidomic and proteomic analysis in fibroblasts from patients with very long-chain acyl-CoA dehydrogenase (VLCADD) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHADD) deficiencies after incubation with heptanoate (C7) and octanoate (C8). Defects of β-oxidation induced striking proteomic alterations, whereas the effect of treatment with mc-FAs was minor.

View Article and Find Full Text PDF

Long-chain fatty acid oxidation disorders (lc-FAOD) are a group of diseases affecting the degradation of long-chain fatty acids. In order to investigate the disease specific alterations of the cellular lipidome, we performed undirected lipidomics in fibroblasts from patients with carnitine palmitoyltransferase II, very long-chain acyl-CoA dehydrogenase, and long-chain 3-hydroxyacyl-CoA dehydrogenase. We demonstrate a deep remodeling of mitochondrial cardiolipins.

View Article and Find Full Text PDF

In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility.

View Article and Find Full Text PDF

Peripheral neuropathy is a known irreversible long-term complication of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MTPD), two inherited disorders of mitochondrial long-chain fatty acid oxidation. The underlying pathophysiology of neuropathy is still not fully understood. We report electrophysiological studies and neurological findings in a series of 8 LCHAD-deficient and 11 MTP-deficient patients.

View Article and Find Full Text PDF

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of mitochondrial β-oxidation. Confirmation diagnostics after newborn screening (NBS) can be performed either by enzyme testing and/or by sequencing of the ACADM gene. Here, we report the results from enzyme testing in lymphocytes with gene variants from molecular analysis of the ACADM gene and with the initial acylcarnitine concentrations in the NBS sample.

View Article and Find Full Text PDF

CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors.

View Article and Find Full Text PDF

Background: Primary carnitine deficiency due to mutations in the SLC22A5 gene is a rare but well-treatable metabolic disorder that puts patients at risk for metabolic decompensations, skeletal and cardiac myopathy and sudden cardiac death.

Results: We report on a 7-year-old boy diagnosed with primary carnitine deficiency 2 years after successful heart transplantation thanks his younger sister's having been identified via expanded newborn screening during a pilot study evaluating an extension of the German newborn screening panel.

Conclusion: As L-carnitine supplementation can prevent and mostly reverse clinical symptoms of primary carnitine deficiency, all patients with cardiomyopathy should be investigated for primary carnitine deficiency even if newborn screening results were unremarkable.

View Article and Find Full Text PDF

Very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD) is the most common defect of long-chain fatty acid β-oxidation. The recommended treatment includes the application of medium-chain triacylglycerols (MCTs). However, long-term treatment of VLCAD mice resulted in the development of a sex-specific metabolic syndrome due to the selective activation of the ERK/mTORc1 signalling in females and ERK/peroxisome proliferator-activated receptor gamma pathway in males.

View Article and Find Full Text PDF

Combined malonic and methylmalonic aciduria (CMAMMA) is an inborn error of metabolism which has been proposed being a benign condition. However, older patients may present with neurological manifestations such as seizures, memory problems, psychiatric problems and/ or cognitive decline. In fibroblasts from CMAMMA patients we have recently demonstrated a dysregulation of energy metabolism with increased dependency on β-oxidation for energy production.

View Article and Find Full Text PDF

In the past 15 years the potential of triheptanoin for the treatment of several human diseases in the area of clinical nutrition has grown considerably. Use of this triglyceride of the odd-chain fatty acid heptanoate has been proposed and applied for the treatment of several conditions in which the energy supply from citric acid cycle intermediates or fatty acid degradation are impaired. Neurological diseases due to disturbed glucose metabolism or metabolic diseases associated with impaired β-oxidation of long chain fatty acid may especially take advantage of alternative substrate sources offered by the secondary metabolites of triheptanoin.

View Article and Find Full Text PDF

Medium-chain-triglycerides (MCT) are widely applied in the treatment of long-chain fatty acid oxidation disorders (lcFAOD). Long-term treatment with MCT led to a sexually dimorphic response in the mouse model of very-long-chain-acyl-CoA-dehydrogenase-deficiency (VLCAD) with the subsequent development of a metabolic syndrome in female mice. In order to evaluate the molecular mechanisms responsible for this sex specific response we performed a comprehensive metabolic phenotyping, SILAC-based quantitative proteomics and characterized the involved signaling pathways by western blot analysis and gene expression.

View Article and Find Full Text PDF

Malonyl-CoA synthetase (ACSF3) catalyzes the first step of the mitochondrial fatty acid biosynthesis (mtFASII). Mutations in ACSF3 cause CMAMMA a rare inborn error of metabolism. The clinical phenotype is very heterogeneous, with some patients presenting with neurologic manifestations.

View Article and Find Full Text PDF

Carnitine palmitoyltransferase II (CPT2) is a rare autosomal recessive inherited disorder affecting mitochondrial β-oxidation. Confirmation diagnostics are mostly based on molecular sequencing of the CPT2 gene, especially to distinguish CPT2 and carnitine:aclycarnitine translocase deficiencies, which present with identical acylcarnitine profiles on newborn screening (NBS). In the past, different enzyme tests in muscle biopsies have been developed in order to study the functional effect in one of the main target organs.

View Article and Find Full Text PDF

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is the most common defect of mitochondrial β-oxidation of long-chain fatty acids. However, the unambiguous diagnosis of true VLCADD patients may be challenging, and a high rate of false positive individuals identified by newborn screening undergo confirmation diagnostics. In this study, we show the outcome of enzyme testing in lymphocytes as a confirmatory tool in newborns identified by screening, and the correlation with molecular sequencing of the ACADVL gene.

View Article and Find Full Text PDF

The kidneys have a central role in the generation, turnover, transport, and excretion of metabolites, and these functions can be altered in CKD. Genetic studies of metabolite concentrations can identify proteins performing these functions. We conducted genome-wide association studies and aggregate rare variant tests of the concentrations of 139 serum metabolites and 41 urine metabolites, as well as their pairwise ratios and fractional excretions in up to 1168 patients with CKD.

View Article and Find Full Text PDF

The white skeletal muscle of very long-chain acyl-CoA-dehydrogenase-deficient (VLCAD ) mice undergoes metabolic modification to compensate for defective β-oxidation in a progressive and time-dependent manner by upregulating glucose oxidation. This metabolic regulation seems to be accompanied by morphologic adaptation of muscle fibers toward the glycolytic fiber type II with the concomitant upregulation of mitochondrial fatty acid biosynthesis (mFASII) and lipoic acid biosynthesis. Dietary supplementation of VLCAD mice with different medium-chain triglycerides over 1 year revealed that odd-chain species has no effect on muscle fiber switch, whereas even-chain species inhibit progressive metabolic adaptation.

View Article and Find Full Text PDF

Background: We describe body composition, lipid metabolism and Stearoyl-CoA desaturase-1 (SCD-1) indices in patients with classical homocystinuria (HCU).

Methods: Eleven treated HCU patients and 16 healthy controls were included. Body composition and bone mineral density were assessed by dual X-ray absorptiometry.

View Article and Find Full Text PDF

Very-long-chain-acyl-CoA-dehydrogenase deficiency is the most common disorder of mitochondrial long-chain fatty acid (LCFA) oxidation, with an incidence of 1:50,000-1:100,000 in newborns. Catabolic situations contribute to the aggravation of symptoms and induce severe metabolic derangement. Treatment for VLCAD-deficiency includes avoidance of fasting and a long-chain fat-restricted and fat-modified diet in which LCFAs are fully or partially replaced by medium-chain triglycerides (MCT).

View Article and Find Full Text PDF