Background: The IS6110 insertion sequence, a member of the IS3 family of insertion sequences, was found to be specific to the Mycobacterium tuberculosis complex (MTBC). Although IS6110 has been extensively characterized as a transposable genetic marker, the evolutionary history of its own transposase-encoding sequence has not, to the best of our knowledge, been investigated.
Methodology/principal Findings: Here we explored the evolution of the IS6110 sequence by analysing the genetic variability and the selective forces acting on its transposase-encoding open reading frames (ORFs) A and B (orfA and orfB).
Objectives: Fingerprinting of Mycobacterium tuberculosis complex strains based on the IS6110 insertion sequence would considerably gain in terms of discriminatory power and versatility if both 5' and 3' polymorphisms were simultaneously targeted, and if it benefited from automated capillary electrophoresis. In response to these requirements, we developed IS6110-5'3'FP (IS6110 5' and 3' fluorescent polymorphisms).
Methods: IS6110-5'3'FP involves the construction of an M.