Publications by authors named "Sara Teixeira de Macedo Silva"

Six new ether phospholipid analogues encompassing constituents from cashew nut shell liquid as the lipid portion were synthesized in an effort to valorize byproducts of the cashew industry toward the generation of potent compounds against Chagas disease. Anacardic acids, cardanols, and cardols were used as the lipid portions and choline as the polar headgroup. The compounds were evaluated for their antiparasitic activity against different developmental stages of .

View Article and Find Full Text PDF

Searching for new alternatives for treating leishmaniasis, we present the synthesis, characterization, and biological evaluation against of the new ZnCl() complex. is 22-hydrazone-imidazoline-2-yl-chol-5-ene-3β-ol, a well-known bioactive molecule functioning as a sterol Δ-sterol methyl transferase (24-SMT) inhibitor. The ZnCl() complex was characterized by infrared, UV-vis, molar conductance measurements, elemental analysis, mass spectrometry, and NMR experiments.

View Article and Find Full Text PDF

Leishmaniasis is a neglected disease caused by protozoan parasites of the Leishmania genus. Benzylamines are a class of compounds selectively designed to inhibit the squalene synthase (SQS) that catalyzes the first committed reaction on the sterol biosynthesis pathway. Herein, we studied seven new benzylamines (SBC 37-43) against Leishmania amazonensis.

View Article and Find Full Text PDF

Chagas disease and leishmaniasis are neglected diseases caused by parasites of the Trypanosomatidae family and together they affect millions of people in the five continents. The treatment of Chagas disease is based on benznidazole, whereas for leishmaniasis few drugs are available, such as amphotericin B and miltefosine. In both cases, the current treatment is not entirely efficient due to toxicity or side effects.

View Article and Find Full Text PDF

The new complexes Zn(ITZ)Cl (1) and Zn(ITZ)(OH) (2) were synthetized by a reaction of itraconazole with their respective zinc salts under reflux. These Zn-ITZ complexes were characterized by elemental analyses, molar conductivity, mass spectrometry, H and C{H} nuclear magnetic resonance, and UV-vis and infrared spectroscopies. The antiparasitic and antifungal activity of Zn-ITZ complexes was evaluated against three protozoans of medical importance, namely, , , and , and two fungi, namely, and The Zn-ITZ complexes exhibited a broad spectrum of action, with antiparasitic and antifungal activity in low concentrations.

View Article and Find Full Text PDF

Kinetoplast DNA (kDNA) bearing unusual mitochondrion of trypanosomatid parasites offers a new paradigm in chemotherapy modality. Topoisomerase II of Leishmania donovani (LdTopII), a key enzyme associated with kDNA replication, is emerging as a potential drug target. However, mode of action of LdTopII targeted compounds in the parasites at sub-cellular level remains largely unknown.

View Article and Find Full Text PDF

Objectives: Leishmaniasis, one of the most significant neglected diseases around the world, is caused by protozoan parasites of the Leishmania genus. Nowadays, the available aetiological treatments for leishmaniasis have variable effectiveness and several problems such as serious side effects, toxicity, high cost and an increasing number of resistance cases. Thus, there is an urgent need for safe, oral and cost-effective drugs for leishmaniases.

View Article and Find Full Text PDF

Treatment of leishmaniasis involves the use of antimonials, miltefosine, amphotericin B or pentamidine. However, the side effects of these drugs and the reports of drug-resistant parasites demonstrate the need for new treatments that are safer and more efficacious. Histone deacetylase inhibitors are a new class of compounds with potential to treat leishmaniasis.

View Article and Find Full Text PDF

Indole alkaloids possess a large spectrum of biological activities including anti-protozoal action. Here we report for the first time that voacamine, isolated from the plant Tabernaemontana coronaria, is an antiprotozoal agent effective against a large array of trypanosomatid parasites including Indian strain of Leishmania donovani and Brazilian strains of Leishmania amazonensis and Trypanosoma cruzi. It inhibits the relaxation activity of topoisomerase IB of L.

View Article and Find Full Text PDF

Sterols play an essential role in the physiology of eukaryotic cells; they play a pivotal role in the normal structure and function of cell membranes and also act as precursors for the synthesis of several different molecules like steroid hormones. Trypanosomatids and fungi have an essential requirement of ergosterol and other 24-alkyl sterols, which are absent in mammalian cells, for their survival and growth. At least 20 metabolic steps are necessary to synthesize sterols as cholesterol and ergosterol with the involvement of different specific enzymes.

View Article and Find Full Text PDF

Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India.

View Article and Find Full Text PDF

Amiodarone (AMIO), the most frequently antiarrhythmic drug used for the symptomatic treatment of chronic Chagas' disease patients with cardiac compromise, has recently been shown to have also specific activity against fungi, Trypanosoma cruzi and Leishmania. In this work, we characterized the effects of AMIO on proliferation, mitochondrial physiology, and ultrastructure of Leishmania amazonensis promastigotes and intracellular amastigotes. The IC(50) values were 4.

View Article and Find Full Text PDF