Publications by authors named "Sara T Rivas"

Purpose: Defining dosimetric rules to automatically detect patients requiring adaptive radiotherapy (ART) is not straightforward, and most centres perform ad-hoc ART with no specific protocol. This study aims to propose and analyse different steps to design a protocol for dosimetrically triggered ART of head and neck (H&N) cancer. As a proof-of-concept, the designed protocol was applied to patients treated in TomoTherapy units, using their available software for daily MVCT image and dose accumulation.

View Article and Find Full Text PDF

Background: In cancer care, determining the most beneficial treatment technique is a key decision affecting the patient's survival and quality of life. Patient selection for proton therapy (PT) over conventional radiotherapy (XT) currently entails comparing manually generated treatment plans, which requires time and expertise.

Purpose: We developed an automatic and fast tool, AI-PROTIPP (Artificial Intelligence Predictive Radiation Oncology Treatment Indication to Photons/Protons), that assesses quantitatively the benefits of each therapeutic option.

View Article and Find Full Text PDF

Robustness evaluation of proton therapy treatment plans is essential for ensuring safe treatment delivery. However, available evaluation procedures feature a limited exploration of the actual robustness of the plan and generally do not provide confidence levels. This study compared established and more sophisticated robustness evaluation procedures, with quantified confidence levels.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to address the dosimetric accuracy of synthetic computed tomography (sCT) images of patients with brain tumor generated using a modified generative adversarial network (GAN) method, for their use in magnetic resonance imaging (MRI)-only treatment planning for proton therapy.

Methods: Dose volume histogram (DVH) analysis was performed on CT and sCT images of patients with brain tumor for plans generated for intensity-modulated proton therapy (IMPT). All plans were robustly optimized using a commercially available treatment planning system (RayStation, from RaySearch Laboratories) and standard robust parameters reported in the literature.

View Article and Find Full Text PDF