Publications by authors named "Sara Simoni"

Traumatic brain injury commonly impairs attention and executive function, and disrupts the large-scale brain networks that support these cognitive functions. Abnormalities of functional connectivity are seen in corticostriatal networks, which are associated with executive dysfunction and damage to neuromodulatory catecholaminergic systems caused by head injury. Methylphenidate, a stimulant medication that increases extracellular dopamine and noradrenaline, can improve cognitive function following TBI.

View Article and Find Full Text PDF

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab.

View Article and Find Full Text PDF

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab.

View Article and Find Full Text PDF

Long-term outcomes are difficult to predict after paediatric traumatic brain injury. The presence or absence of focal brain injuries often do not explain cognitive, emotional and behavioural disabilities that are common and disabling. In adults, traumatic brain injury produces progressive brain atrophy that can be accurately measured and is associated with cognitive decline.

View Article and Find Full Text PDF

Background: Peer adversity and aggression are common experiences in childhood and adolescence which lead to poor mental health outcomes. To date, there has been no review conducted on the neurobiological changes associated with relational peer-victimisation, bullying and cyberbullying.

Methods: This systematic review assessed structural and functional brain changes associated with peer-victimisation, bullying, and cyberbullying from 1 January 2000 to April 2021.

View Article and Find Full Text PDF

Cognitive impairment after traumatic brain injury remains hard to predict. This is partly because axonal injury, which is of fundamental importance, is difficult to measure clinically. Advances in MRI allow axonal injury to be detected after traumatic brain injury, but the most sensitive approach is unclear.

View Article and Find Full Text PDF

Memory impairment is a common, disabling effect of traumatic brain injury. In healthy individuals, successful memory encoding is associated with activation of the dorsal attention network as well as suppression of the default mode network. Here, in traumatic brain injury patients we examined whether: (i) impairments in memory encoding are associated with abnormal brain activation in these networks; (ii) whether changes in this brain activity predict subsequent memory retrieval; and (iii) whether abnormal white matter integrity underpinning functional networks is associated with impaired subsequent memory.

View Article and Find Full Text PDF

Objective: Traumatic brain injury (TBI) and rapid eye movement sleep behavioural disorder (RBD) are risk factors for Parkinson's disease (PD). Dopaminergic abnormalities are often seen after TBI, but patients usually lack parkinsonian features. We test whether TBI, PD and RBD have distinct striatal dopamine abnormalities using dopamine transporter (DaT) imaging.

View Article and Find Full Text PDF

The posteromedial cortex (PMC) is a key region involved in the development and progression of Alzheimer's disease (AD). Previous studies have demonstrated a heterogenous functional architecture of the region that is composed of discrete functional modules reflecting a complex pattern of functional connectivity. However, little is understood about the mechanisms underpinning this complex network architecture in neurodegenerative disease, and the differential vulnerability of connectivity-based subdivisions in the PMC to AD pathogenesis.

View Article and Find Full Text PDF

Objective: To investigate dopamine D2/D3 receptor availability following traumatic brain injury (TBI) and their relationship to the presence of DSM-IV Major Depressive Disorder (MDD) and patterns of axonal injury.

Methods: Twelve moderate-severe TBI patients and 26 controls were imaged using [C]PHNO positron emission tomography (PET) and structural magnetic resonance imaging (MRI). TBI patients and a second group of 32 controls also underwent diffusion tensor imaging (DTI) and neuropsychological assessment.

View Article and Find Full Text PDF

Cognitive impairment is common following traumatic brain injury. Dopaminergic drugs can enhance cognition after traumatic brain injury, but individual responses are highly variable. This may be due to variability in dopaminergic damage between patients.

View Article and Find Full Text PDF

Traumatic brain injury can reduce striatal dopamine levels. The cause of this is uncertain, but is likely to be related to damage to the nigrostriatal system. We investigated the pattern of striatal dopamine abnormalities using 123I-Ioflupane single-photon emission computed tomography (SPECT) scans and their relationship to nigrostriatal damage and clinical features.

View Article and Find Full Text PDF

Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration.

View Article and Find Full Text PDF

Survivors of a traumatic brain injury can deteriorate years later, developing brain atrophy and dementia. Traumatic brain injury triggers chronic microglial activation, but it is unclear whether this is harmful or beneficial. A successful chronic-phase treatment for traumatic brain injury might be to target microglia.

View Article and Find Full Text PDF

Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control.

View Article and Find Full Text PDF

SEE BIGLER DOI101093/AWW277 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Post-traumatic amnesia is very common immediately after traumatic brain injury. It is characterized by a confused, agitated state and a pronounced inability to encode new memories and sustain attention. Clinically, post-traumatic amnesia is an important predictor of functional outcome.

View Article and Find Full Text PDF

Rationale: Resting brain perfusion, measured using the MRI-based arterial spin labelling (ASL) technique, is sensitive to detect central effects of single, clinically effective, doses of pharmacological compounds. However, pharmacological interaction experiments, such as the modulation of one drug response in the presence of another, have not been widely investigated using a task-free ASL approach.

Objectives: We assessed the effects of three psychoactive compounds (ketamine, risperidone and lamotrigine), and their interaction, on resting brain perfusion in healthy human volunteers.

View Article and Find Full Text PDF

Ketamine produces effects in healthy humans that resemble the positive, negative and cognitive symptoms of schizophrenia. We investigated the effect of ketamine administration on brain activity as indexed by blood-oxygen-level-dependent (BOLD) signal change response, and its relationship to ketamine-induced subjective changes, including perceptual distortion. Thirteen healthy participants volunteered for the study.

View Article and Find Full Text PDF

The stimulant drug methylphenidate (MPH) and the non-stimulant drug atomoxetine (ATX) are both widely used for the treatment of attention deficit/hyperactivity disorder (ADHD), but their differential effects on human brain function are poorly understood. PET and blood oxygen level dependent (BOLD) fMRI have been used to study the effects of MPH and BOLD fMRI is beginning to be used to delineate the effects of MPH and ATX in the context of cognitive tasks. The BOLD signal is a proxy for neuronal activity and is dependent on three physiological parameters: regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen and cerebral blood volume.

View Article and Find Full Text PDF

Stimulant and non-stimulant drugs can reduce symptoms of attention deficit/hyperactivity disorder (ADHD). The stimulant drug methylphenidate (MPH) and the non-stimulant drug atomoxetine (ATX) are both widely used for ADHD treatment, but their differential effects on human brain function remain unclear. We combined event-related fMRI with multivariate pattern recognition to characterize the effects of MPH and ATX in healthy volunteers performing a rewarded working memory (WM) task.

View Article and Find Full Text PDF

During the last years several remote monitoring systems have been introduced in everyday clinical practice, because of the development of new computer and information technologies. Therefore, clinical and technical data of implanted devices can be transmitted by patients directly to the cardiology department through a transtelephonic web-based connection, without undergoing traditional outpatient evaluation. Home monitoring systems are effective in identifying device malfunctioning and clinical instability in patients with implantable cardioverter-defibrillators.

View Article and Find Full Text PDF