Publications by authors named "Sara Signorelli"

To estimate the effects of weather conditions on welfare globally, cross-country comparisons need to rely on international poverty lines and comparable data sources at the micro-level. To this end, nationally representative household surveys can offer a useful instrument, also at the sub-national level. This study seeks to expand the existing knowledge on the determinants of poverty in Africa south of the Sahara (SSA), examining how long-term climatic conditions and year-specific weather shocks affect expenditure per capita.

View Article and Find Full Text PDF

Raman spectroscopy, which is a suitable tool to elucidate the structural properties of intrinsically disordered proteins, was applied to investigate the changes in both the structure and the conformational heterogeneity of the DNA-binding domain (DBD) belonging to the intrinsically disordered protein p53 upon its binding to Azurin, an electron-transfer anticancer protein from . The Raman spectra of the DBD and Azurin, isolated in solution or forming a complex, were analyzed by a combined analysis based on peak inspection, band convolution, and principal component analysis (PCA). In particular, our attention was focused on the Raman peaks of Tyrosine and Tryptophan residues, which are diagnostic markers of protein side chain environment, and on the Amide I band, of which the deconvolution allows us to extract information about α-helix, β-sheet, and random coil contents.

View Article and Find Full Text PDF

Climate change and weather variability pose serious threats to food and nutrition security as well as ecosystems, especially when livelihoods depend heavily on natural resources. This study examines the effect of weather variability (shock) occurring up to three planting and growing season prior on per capita monthly household expenditure in rural Tanzania, Uganda, and Ghana. The analyses combine monthly temperature (1950-2013) and precipitation (1981-2013) data with data from several rounds of household surveys conducted between 1998 and 2013.

View Article and Find Full Text PDF

Background: Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.

View Article and Find Full Text PDF

The intrinsically disordered protein p53 has attracted a strong interest for its important role in genome safeguarding and potential therapeutic applications. However, its disordered character makes difficult a full characterization of p53 structural architecture. A deep knowledge of p53 structural motifs could significantly help the understanding of its functional properties, in connection with its complex binding network.

View Article and Find Full Text PDF

Multiple substitution of d- for l-amino acids decreases the intracellular uptake of cationic cell penetrating peptides (CPP) in a cell line-dependent manner. We show here that a single d-amino acid substitution can decrease the overall uptake of the anionic, amphipathic CPP, p28, into cancer and histologically matched normal cell lines, while not altering the preferential uptake of p28 into cancer cells. The decrease appears dependent on the position of the d-substitution within the peptide and the ability of the substituted d-amino acid to alter chirality.

View Article and Find Full Text PDF

Under hypoxic conditions eukaryotic cells and tissues undergo adaptive responses involving glycolysis, angiogenesis, vasoconstriction and inflammation. The underlying molecular mechanisms are not yet fully elucidated and are most likely cell and tissue specific. In the lung, alveolar epithelial cells and microvascular endothelial cells are highly sensitive to hypoxia and together orchestrate a rapid and sustained adaptive response.

View Article and Find Full Text PDF

In the renal cortex the peritubular capillary network and the proximal tubular epithelium cooperate in solute and water reabsorption, secretion, and inflammation. However, the mechanisms by which these two cell types coordinate such diverse functions remain to be characterized. Here we investigated the influence of microvascular endothelial cells on proximal tubule cells, using a filter-based, noncontact, close-proximity coculture of the human microvascular endothelial cell line HMEC-1 and the human proximal tubular epithelial cell line HK-2.

View Article and Find Full Text PDF

ICln is a multifunctional protein that is essential for cell volume regulation. It can be found in the cytosol and is associated with the cell membrane. Besides its role in the splicing process, ICln is critically involved in the generation of ion currents activated during regulatory volume decrease after cell swelling (RVDC).

View Article and Find Full Text PDF