The maternally inherited mitochondrial DNA (mtDNA) is a circular 16,569bp double stranded DNA that encodes 37 genes, 24 of which (2 rRNAs and 22 tRNAs) are necessary for transcription and translation of 13 polypeptides that are all subunits of respiratory chain. Pathogenic mutations in mtDNA cause respiratory chain dysfunction, and are the underlying defect in an ever-increasing number of mtDNA-related encephalomyopathies with distinct phenotypes. In this chapter, we present an overview of mtDNA mutations and describe the molecular techniques currently employed in our laboratory to detect two types of mtDNA mutations: single-large-scale rearrangements and point mutations.
View Article and Find Full Text PDFPrenatal diagnosis of disorders due to mitochondrial DNA (mtDNA) tRNA gene mutations is problematic. Experience in families harboring the protein-coding ATPase 6 m.8993T>G mutation suggests that the mutant load is homogeneous in different tissues, thus allowing prenatal diagnosis.
View Article and Find Full Text PDFPathogenic mutations in the tRNA(Leu(UCN)) gene of mitochondrial DNA (mtDNA) have been invariably accompanied by skeletal myopathy with or without chronic progressive external ophthalmoplegia (CPEO). We report a young woman with a heteroplasmic m.12276G>A mutation in tRNA(Leu(UCN)), who had childhood-onset and slowly progressive encephalopathy with ataxia, cognitive impairment, and hearing loss.
View Article and Find Full Text PDFChildhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as 'benign cytochrome c oxidase deficiency myopathy' is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care.
View Article and Find Full Text PDFMitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), one of the most common mitochondrial multisystemic diseases, is most commonly associated with an A-to-G transition at nucleotide position 3243 (A3243G) in mitochondrial DNA. We studied 34 individuals harboring the A3243G mutation for up to 7 years; 17 had the full MELAS phenotype and 17 who were classified as "carrier relatives" because they were either asymptomatic or had some symptoms suggestive of mitochondrial disease but no seizures or strokes. Using the sensitive real-time polymerase chain reaction to quantify the A3243G mutation, we confirmed that the percent mutation decreases progressively in DNA isolated from blood: the average percent decrease was 0.
View Article and Find Full Text PDFMethylmalonic acidemia is an autosomal recessive inborn error of metabolism caused by defective activity of methylmalonyl-CoA mutase (MUT) that exhibits multiorgan system pathology. To examine whether mitochondrial dysfunction is a feature of this organic acidemia, a background-modified Mut-knockout mouse model was constructed and used to examine mitochondrial ultrastructure and respiratory chain function in the tissues that manifest pathology in humans. In parallel, the liver from a patient with mut methylmalonic acidemia was studied in a similar fashion.
View Article and Find Full Text PDFBackground: Autosomal recessive mutations in MPV17 (OMIM *137960) have been identified in the hepatocerebral form of mitochondrial DNA depletion syndrome (MDS).
Objective: To describe the clinical, morphologic, and genetic findings in 3 children with MPV17-related MDS from 2 unrelated families.
Design: Case report.
Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age.
View Article and Find Full Text PDFMutations in mitochondrial DNA (mtDNA) tRNA genes can be considered functionally recessive because they result in a clinical or biochemical phenotype only when the percentage of mutant molecules exceeds a critical threshold value, in the range of 70-90%. We report a novel mtDNA mutation that contradicts this rule, since it caused a severe multisystem disorder and respiratory chain (RC) deficiency even at low levels of heteroplasmy. We studied a 13-year-old boy with clinical, radiological and biochemical evidence of a mitochondrial disorder.
View Article and Find Full Text PDFBackground: The number of molecular causes of MELAS (a syndrome consisting of mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes) and Leigh syndrome (LS) has steadily increased. Among these, mutations in the ND5 gene (OMIM 516005) of mitochondrial DNA are important, and the A13513A change has emerged as a hotspot.
Objective: To describe the clinical features, muscle pathological and biochemical characteristics, and molecular study findings of 12 patients harboring the G13513A mutation in the ND5 gene of mitochondrial DNA compared with 14 previously described patients with the same mutation.
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common mitochondrial disease due to mitochondrial DNA (mtDNA) mutations. At least 15 distinct mtDNA mutations have been associated with MELAS, and about 80% of the cases are caused by the A3243G tRNA(Leu(UUR)) gene mutation. We report here a novel tRNA(Val) mutation in a 37-year-old woman with manifestations of MELAS, and compare her clinicopathological phenotype with other rare cases associated tRNA(Val) mutations.
View Article and Find Full Text PDFA 6-week-old child presented with hypotonia, myopathy, and a rapidly worsening dilated cardiomyopathy with severe atrial and ventricular arrhythmias and pulmonary hypertension, which proved fatal at age 3 months. Biochemical analysis showed a combined deficiency of the enzymatic activities of complexes I and IV and molecular studies identified a T14709C mutation in the mitochondrial tRNA glutamic acid gene. A review of symptomatology in patients with this mutation shows that it mainly presents in childhood or young adults with mild myopathy and diabetes mellitus.
View Article and Find Full Text PDFA 14-year-old boy had exercise intolerance, weakness, ataxia, and lactic acidosis. Because his muscle biopsy showed a mosaic pattern of fibers staining intensely with the succinate dehydrogenase reaction but not at all with the cytochrome c oxidase reaction, we sequenced his mitochondrial DNA and found a novel mutation (C14680A) in the gene for tRNAGlu. The mutation was present in accessible tissues from the asymptomatic mother but not from a brother with Asperger syndrome.
View Article and Find Full Text PDFA 10-wk-old infant girl with severe hypertrophy of the septal and atrial walls by cardiac ultrasound, developed progressive ventricular wall thickening and died of aspiration pneumonia at 5 mo of age. Postmortem examination revealed ventricular hypertrophy and massive atrial wall thickening due to glycogen accumulation. A skeletal muscle biopsy showed increased free glycogen and decreased activity of phosphorylase b kinase (PHK).
View Article and Find Full Text PDFA 6-year-old boy had progressive muscle weakness since age 4 and emotional problems diagnosed as Asperger syndrome. His mother and two older siblings are in good health and there is no family history of neuromuscular disorders. Muscle biopsy showed ragged-red and cytochrome coxidase (COX)-negative fibers.
View Article and Find Full Text PDFAutosomal recessive nonsyndromic sensorineural hearing impairment (ARNSHI) comprises 80% of familial hearing loss cases. Approximately half result from mutations in the connexin 26 (Cx26) gene, GJB2, in Caucasian populations. Heterozygous mutations in GJB2 occasionally co-occur with a deletion of part of GJB6 (connexin 30; Cx30).
View Article and Find Full Text PDFBackground: Mitochondrial DNA depletion syndrome is an autosomal recessive disorder characterized by decreased mitochondrial DNA copy numbers in affected tissues. It has been linked to 4 genes involved in deoxyribonucleotide triphosphate metabolism: thymidine kinase 2 (TK2), deoxyguanosine kinase (DGUOK), polymerase gamma (POLG), and SUCLA2, the gene encoding the beta-subunit of the adenosine diphosphate-forming succinyl coenzyme A synthetase ligase.
Objective: To highlight the variability in the clinical spectrum of TK2-related mitochondrial DNA depletion syndrome.
Two brothers with the childhood variant of type II glycogenosis (GSD-IIb) treated with nutrition and exercise therapy (NET) from a young age showed an unusually benign course. Muscle biopsy from the older brother, which showed characteristic vacuolar glycogen accumulation at age 2, had reverted to normal by age 16. A muscle biopsy from the younger brother was normal at 5 years.
View Article and Find Full Text PDFMutations in the SURF1 gene are the most frequent causes of Leigh disease with cytochrome c oxidase deficiency. We describe four children with novel SURF1 mutations and unusual features: three had prominent renal symptoms and one had ragged red fibers in the muscle biopsy. We identified five pathogenic mutations in SURF1: two mutations were novel, an in-frame nonsense mutation (834G-->A) and an out-of-frame duplication (820-824dupTACAT).
View Article and Find Full Text PDFIn this article, we review the current methodologies used for the molecular diagnosis of mitochondrial DNA defects. Definition of mitochondrial disorders at the molecular level has been difficult because of both clinical and genetic heterogeneity. Direct DNA analysis for common point mutations and large mtDNA deletions is readily performed and can be done routinely.
View Article and Find Full Text PDFJ Pediatr Gastroenterol Nutr
April 2005
The majority of patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes) have the A3243G point mutation. The much rarer T3271C mutation has been reported predominantly in Japanese subjects. Our objective was to better define the clinical phenotype and mutation load in patients with MELAS and the T3271C mutation in mitochondrial DNA.
View Article and Find Full Text PDFL-citrulline, classified as a nonessential amino acid, is synthesized predominantly via Delta-1-pyrroline carboxylate synthase in the endothelial cells of the small intestine. In mammals, small quantities of citrulline are also produced in nitric oxide synthase-expressing cells. Considering the fact that the enzymes involved in the endogenous synthesis of L-citrulline are all located in the mitochondria and the fact that citrulline is a component of the citrulline-nitric oxide (NO) cycle, we hypothesized that the distinct clinical, biochemical, and morphological characteristics of MELAS, a maternally inherited mitochondrial disorder, might be due to alterations in nitric oxide homeostasis.
View Article and Find Full Text PDFBackground: Cytochrome-c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain, and COX deficiency is a common cause of mitochondrial diseases. Cytochrome-c oxidase is composed of 13 subunits, of which 3 are encoded by mitochondrial DNA and 10 by nuclear DNA. Mutations have been identified in each of the 3 mitochondrial DNA genes but in none of the nuclear DNA genes.
View Article and Find Full Text PDF