Publications by authors named "Sara Santa Cruz-Calvo"

Cytokines produced by peripheral T-helper 1/17 cells disproportionately contribute to the inflammation (i.e., metaflammation) that fuels type 2 diabetes (T2D) pathogenesis.

View Article and Find Full Text PDF

Aging is associated with the onset and progression of multiple diseases, which limit health span. Chronic low-grade inflammation in the absence of overt infection is considered the simmering source that triggers age-associated diseases. Failure of many cellular processes during aging is mechanistically linked to inflammation; however, the overall decline in the cellular homeostasis mechanism of autophagy has emerged as one of the top and significant inducers of inflammation during aging, frequently known as inflammaging.

View Article and Find Full Text PDF

Aging promotes numerous intracellular changes in T cells that impact their effector function. Our data show that aging promotes an increase in the localization of STAT3 to the mitochondria (mitoSTAT3), which promotes changes in mitochondrial dynamics and function and T-cell cytokine production. Mechanistically, mitoSTAT3 increased the activity of aging T-cell mitochondria by increasing complex II.

View Article and Find Full Text PDF

Objective: Myeloid cells dominate metabolic disease-associated inflammation (metaflammation) in mouse obesity, but the contributions of myeloid cells to the peripheral inflammation that fuels sequelae of human obesity are untested. This study used unbiased approaches to rank contributions of myeloid and T cells to peripheral inflammation in people with obesity across the spectrum of metabolic health.

Methods: Peripheral blood mononuclear cells (PBMCs) from people with obesity with or without prediabetes or type 2 diabetes were stimulated with T cell-targeting CD3/CD28 or myeloid-targeting lipopolysaccharide for 20 to 72 hours to assess cytokine production using Bio-Plex.

View Article and Find Full Text PDF

Obesity promotes the onset and progression of metabolic and inflammatory diseases such as type 2 diabetes. The chronic low-grade inflammation that occurs during obesity triggers multiple signaling mechanisms that negatively affect organismal health. One such mechanism is the persistent activation and mitochondrial translocation of STAT3, which is implicated in inflammatory pathologies and many types of cancers.

View Article and Find Full Text PDF

Obesity and type 2 diabetes mellitus (T2DM) are increasing in prevalence owing to decreases in physical activity levels and a shift to diets that include addictive and/or high-calorie foods. These changes are associated with the adoption of modern lifestyles and the presence of an obesogenic environment, which have resulted in alterations to metabolism, adaptive immunity and endocrine regulation. The size and quality of adipose tissue depots in obesity, including the adipose tissue immune compartment, are critical determinants of overall health.

View Article and Find Full Text PDF

The burden of aging and obesity is urging extended investigation into the molecular mechanisms that underlie chronic adipose tissue inflammation. B cell-targeted therapies are emerging as novel tools to modulate the immune system and thereby mitigate aging and obesity-related metabolic complications.

View Article and Find Full Text PDF

Targeting peripheral CB1R is desirable for the treatment of metabolic syndromes without adverse neuropsychiatric effects. We previously reported a human hCB1b isoform that is selectively enriched in pancreatic beta-cells and hepatocytes, providing a potential peripheral therapeutic hCB1R target. It is unknown whether there are peripherally enriched mouse and rat CB1R (mCB1 and rCB1, respectively) isoforms.

View Article and Find Full Text PDF

We and others have reported that taste cells in taste buds express many peptides in common with cells in the gut and islets of Langerhans in the pancreas. Islets and taste bud cells express the hormones glucagon and ghrelin, the same ATP-sensitive potassium channel responsible for depolarizing the insulin-secreting β cell during glucose-induced insulin secretion, as well as the propeptide-processing enzymes PC1/3 and PC2. Given the common expression of functionally specific proteins in taste buds and islets, it is surprising that no one has investigated whether insulin is synthesized in taste bud cells.

View Article and Find Full Text PDF

Aims/hypothesis: The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell. Deciphering the exact function of CB1R in beta cells has been confounded by the expression of this receptor on multiple tissues involved in regulating metabolism.

View Article and Find Full Text PDF

The mechanisms regulating incretin secretion are not fully known. Human obesity is associated with altered incretin secretion and elevated endocannabinoid levels. Since cannabinoid receptors (CBRs) are expressed on incretin-secreting cells in rodents, we hypothesized that endocannabinoids are involved in the regulation of incretin secretion.

View Article and Find Full Text PDF

Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism.

View Article and Find Full Text PDF

Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought.

View Article and Find Full Text PDF

Aims: Membrane-bound CYB5R3 deficiency in humans causes recessive hereditary methaemoglobinaemia (RHM), an incurable disease that is characterized by severe neurological disorders. CYB5R3 encodes for NADH-dependent redox enzyme that contributes to metabolic homeostasis and stress protection; however, how it is involved in the neurological pathology of RHM remains unknown. Here, the role and transcriptional regulation of CYB5R3 was studied under nutritional and oxidative stress.

View Article and Find Full Text PDF

Transformed cells suffer several changes leading to the increase of protective mechanisms and show a metabolic profile in accordance with higher proliferative capacity. In these mechanisms, changes in mitochondrial activity cause a higher glycolytic metabolism in detriment of oxidative phosphorylation. In these changes, H⁺-ATPase regulation seems to be importantly involved.

View Article and Find Full Text PDF

Every other day feeding (EOD) and exercise induce changes in cell metabolism. The aim of the present work was to know if both EOD and exercise produce similar effects on physical capacity, studying their physiological, biochemical and metabolic effects on muscle. Male OF-1 mice were fed either ad libitum (AL) or under EOD.

View Article and Find Full Text PDF