Cu immobilized onto N-doped carbon spheres (Cu/N-doped CS) derived from soybean flour was synthesized via the hydrothermal method and certified as a green high-efficiency catalyst for the regioselective synthesis of 1,4-disubstituted 1H-1,2,3-triazoles. The obtained N-doped carbon spheres from a combination of glucose and soy flour have a larger size and suitable affinity for load copper species. The morphology and structure of the as-prepared catalyst have been confirmed based on FT-IR, XRD, FE-SEM, EDX, BET, and ICP-OES characterizations.
View Article and Find Full Text PDFHerein, we report the synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe (DSS/MIL-88A-Fe) composite through a hydrothermal method. To survey the structural and compositional features of the synthesized composite, a variety of spectroscopic and microscopic techniques, including FT-IR, XRD, BET, TEM, FE-SEM, EDX, and EDX-mapping, have been employed. A noteworthy point in this synthesis procedure is the integration of MOF with PMO to increase the adsorbent performance, such as higher specific surface area and more active sites.
View Article and Find Full Text PDF