Publications by authors named "Sara Rosenthal"

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (MASH), is a major risk factor for cirrhosis and hepatocellular carcinoma (HCC) and a leading cause of liver transplantation. MASH is caused by an accumulation of toxic fat molecules in the hepatocyte which leads to inflammation and fibrosis. Inadequate human "MASH in a dish" models have limited our advances in understanding MASH pathogenesis and in drug discovery.

View Article and Find Full Text PDF

Background & Aims: Metabolic dysfunction-associated steatotic liver disease ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis. Transdifferentiation of hepatic stellate cells (HSCs) into fibrogenic myofibroblasts plays a critical role in the pathogenesis of MASH liver fibrosis. We compared transcriptome and chromatin accessibility of human HSCs from NORMAL, MASL, and MASH livers at single-cell resolution.

View Article and Find Full Text PDF

Numerous Treponema species are prevalent in the dysbiotic subgingival microbial community during periodontitis. The major outer sheath protein is a highly expressed virulence factor of the well-characterized species Treponema denticola. Msp forms an oligomeric membrane protein complex with adhesin and porin properties and contributes to host-microbial interaction.

View Article and Find Full Text PDF

While macrophage heterogeneity during metabolic dysfunction-associated steatohepatitis (MASH) has been described, the fate of these macrophages during MASH regression is poorly understood. Comparing macrophage heterogeneity during MASH progression vs regression, we identified specific macrophage subpopulations that are critical for MASH/fibrosis resolution. We elucidated the restorative pathways and gene signatures that define regression-associated macrophages and establish the importance of TREM2 macrophages during MASH regression.

View Article and Find Full Text PDF

Background: Ménière's disease (MD) is a disorder of the inner ear that causes episodic bouts of severe dizziness, roaring tinnitus, and fluctuating hearing loss. To date, no targeted therapy exists. As such, we have undertaken a large whole genome sequencing study on carefully phenotyped unilateral MD patients with the goal of gene/pathway discovery and a move towards targeted intervention.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium is the primary treatment for bipolar disorder (BD), but how it works and predicts outcomes is not fully understood.
  • A previous study identified key cellular pathways linked to lithium response, including focal adhesion and PI3K-Akt signaling.
  • In this new study, researchers confirmed these pathways in a larger group of 2039 patients but found no connection with the extracellular matrix, suggesting that issues with neuronal growth signaling may impact lithium effectiveness.
View Article and Find Full Text PDF

Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following PNS injury. The ligands and receptors that activate and sustain SC transformation remain incompletely understood. Proteins released by injured axons represent important candidates for activating the SC Repair Program.

View Article and Find Full Text PDF

Nonalcoholic steatohepatitis (NASH) is an inflammatory and fibrotic liver disease that has reached epidemic proportions and has no approved pharmacologic therapies. Research and drug development efforts are hampered by inadequate preclinical models. This research describes a three-dimensional bioprinted liver tissue model of NASH built using primary human hepatocytes and nonparenchymal liver cells (hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) from either healthy or NASH donors.

View Article and Find Full Text PDF

Epithelial cells are covered in carbohydrates (glycans). This glycan coat or "glycocalyx" interfaces directly with microbes, providing a protective barrier against potential pathogens. Bacterial vaginosis (BV) is a condition associated with adverse health outcomes in which bacteria reside in direct proximity to the vaginal epithelium.

View Article and Find Full Text PDF

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium.

View Article and Find Full Text PDF

Liver fibrosis of different etiologies is a serious health problem worldwide. There is no effective therapy available for liver fibrosis except the removal of the underlying cause of injury or liver transplantation. Development of liver fibrosis is caused by fibrogenic myofibroblasts that are not present in the normal liver, but rather activate from liver resident mesenchymal cells in response to chronic toxic or cholestatic injury.

View Article and Find Full Text PDF
Article Synopsis
  • HPV-associated oropharynx carcinoma (HPVOPC) tumors exhibit low mutational burden, and studying other alterations like DNA methylation, alternative splicing, and copy number variation can reveal more about how this cancer develops.
  • Research identified that methylation changes had the strongest connection to gene expression networks, notably within G protein-coupled receptor (GPCR) pathways, including immune-related signals from CXCR3 cytokines.
  • In vivo studies showed that blocking the CXCR3 receptor slowed tumor growth in mice lacking an immune response, indicating that while the CXCR3 axis can promote tumor growth, it can also be influenced by the immune system, highlighting the complexity of targeting this pathway in treatment.
View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the challenge in genome-wide association studies (GWASs) where different species often do not show agreement in orthologous genes, using body mass index (BMI) as a case study.
  • By analyzing molecular networks, researchers found that while specific BMI-associated genes differ between humans and rats, the networks connecting these genes revealed significant overlaps, pointing to shared biological mechanisms like synaptic signaling and hormonal regulation.
  • The findings suggest that, despite some species-specific mechanisms, there are conserved genetic networks across mammals that influence phenotypes, offering new insights into how model species may reflect human biology.
View Article and Find Full Text PDF
Article Synopsis
  • Lithium is recognized as a leading treatment for bipolar disorder, but predicting who will respond to it remains a challenge, leading researchers to investigate the genetic and functional differences between lithium responders and non-responders.
  • A study analyzing iPSC-derived neurons found 41 genes significantly expressed differently between these groups, and further gene prioritization identified over a thousand candidate genes related to lithium response.
  • The research highlighted the role of focal adhesion and the extracellular matrix in response mechanisms, indicating that differences in these areas may have a more significant impact on lithium treatment efficacy than the drug itself.
View Article and Find Full Text PDF

Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown.

View Article and Find Full Text PDF

Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.

View Article and Find Full Text PDF

A longstanding goal of biomedicine is to understand how alterations in molecular and cellular networks give rise to the spectrum of human diseases. For diseases with shared etiology, understanding the common causes allows for improved diagnosis of each disease, development of new therapies and more comprehensive identification of disease genes. Accordingly, this protocol describes how to evaluate the extent to which two diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic cancer is tough to treat due to its resistance to standard therapies, primarily due to the presence of cancer stem cells that drive disease progression.* -
  • Research highlights the role of SMARCD3, a member of the SWI/SNF complex, as a key regulator involved in this form of cancer, with its levels elevated in cancer stem cells and in actual pancreatic cancer cases.* -
  • Loss of SMARCD3 in mouse models shows improved survival, especially when combined with chemotherapy, as it influences cancer cell metabolism linked to therapy resistance, making SMARCD3 a promising target for new treatments.*
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses and spreads by metastasis to the liver. Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I) support or restrain the progression of PDAC and may impede blood supply and nutrient availability. The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers to escape nutrient limitation, remain poorly understood.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract.

Objective: HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes.

View Article and Find Full Text PDF

Background And Aims: NAFLD is the most common chronic liver disease in children. Large pediatric studies identifying single nucleotide polymorphisms (SNPs) associated with risk and histologic severity of NAFLD are limited. Study aims included investigating SNPs associated with risk for NAFLD using family trios and association of candidate alleles with histologic severity.

View Article and Find Full Text PDF

Integration of multi-omics data with molecular interaction networks enables elucidation of the pathophysiology of Alzheimer's disease (AD). Using the latest genome-wide association studies (GWAS) including proxy cases and the STRING interactome, we identified an AD network of 142 risk genes and 646 network-proximal genes, many of which were linked to synaptic functions annotated by mouse knockout data. The proximal genes were confirmed to be enriched in a replication GWAS of autopsy-documented cases.

View Article and Find Full Text PDF

To determine the impact of genetic variants on the brain, we used genetically informed brain atlases in genome-wide association studies of regional cortical surface area and thickness in 39,898 adults and 9136 children. We uncovered 440 genome-wide significant loci in the discovery cohort and 800 from a post hoc combined meta-analysis. Loci in adulthood were largely captured in childhood, showing signatures of negative selection, and were linked to early neurodevelopment and pathways associated with neuropsychiatric risk.

View Article and Find Full Text PDF