In plants, L-serine (Ser) biosynthesis occurs through various pathways and is highly dependent on the atmospheric CO concentration, especially in C species, due to the association of the Glycolate Pathway of Ser Biosynthesis (GPSB) with photorespiration. Characterization of a second plant Ser pathway, the Phosphorylated Pathway of Ser Biosynthesis (PPSB), revealed that it is at the crossroads of carbon, nitrogen, and sulphur metabolism. The PPSB comprises three sequential reactions catalysed by 3-phosphoglycerate dehydrogenase (PGDH), 3-phosphoSer aminotransferase (PSAT) and 3-phosphoSer phosphatase (PSP).
View Article and Find Full Text PDFL-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth.
View Article and Find Full Text PDFBecause it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood.
View Article and Find Full Text PDFUnlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH).
View Article and Find Full Text PDFThe first step in the Phosphorylated Pathway of serine (Ser) Biosynthesis (PPSB) is catalyzed by the enzyme Phosphoglycerate Dehydrogenase (PGDH), coded in Arabidopsis thaliana by three genes. Gene expression analysis indicated that PGDH1 and PGDH2 were induced, while PGDH3 was repressed, by salt-stress. Accordingly, PGDH3 overexpressing plants (Oex PGDH3) were more sensitive to salinity than wild type plants (WT), while plants overexpressing PGDH1 (Oex PGDH1) performed better than WT under salinity conditions.
View Article and Find Full Text PDFAlthough the plant Phosphorylated Pathway of l-Ser Biosynthesis (PPSB) is essential for embryo and pollen development, and for root growth, its metabolic implications have not been fully investigated. A transcriptomics analysis of Arabidopsis () PPSB-deficient mutants at night, when PPSB activity is thought to be more important, suggested interaction with the sulfate assimilation process. Because sulfate assimilation occurs mainly in the light, we also investigated it in PPSB-deficient lines in the day.
View Article and Find Full Text PDFIn plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis () PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells.
View Article and Find Full Text PDFThe presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3-phosphoglycerate (3-PGA) can equilibrate in non-photosynthetic tissues.
View Article and Find Full Text PDFThe cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type.
View Article and Find Full Text PDFThis study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters.
View Article and Find Full Text PDFThree different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Ser Biosynthesis (PPSB) has been known to exist since the 1950s, but its biological relevance was not revealed until quite recently when the last enzyme of the pathway, the Phosphoserine Phosphatase, was functionally characterized. In the associated study (1), we characterized a family of genes coding for putatite phosphoglycerate dehydrogenases (PGDH, 3-PGDH, and EDA9), the first enzyme of the PPSB.
View Article and Find Full Text PDFIn plants, 3 different pathways of serine biosynthesis have been described: the Glycolate pathway, which is associated with photorespiration, and 2 non-photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been known since the 1950s, but has been studied relatively little, probably because it was considered of minor significance as compared with the Glycolate pathway. In the associated study (1), we described for the first time in plants the in vivo functional characterization of the PPSB, by targeting the phosphoserine phosphatase (PSP1), the last enzyme of the pathway.
View Article and Find Full Text PDFThis work contributes to unraveling the role of the phosphorylated pathway of serine (Ser) biosynthesis in Arabidopsis (Arabidopsis thaliana) by functionally characterizing genes coding for the first enzyme of this pathway, 3-phosphoglycerate dehydrogenase (PGDH). We identified two Arabidopsis plastid-localized PGDH genes (3-PGDH and EMBRYO SAC DEVELOPMENT ARREST9 [EDA9]) with a high percentage of amino acid identity with a previously identified PGDH. All three genes displayed a different expression pattern indicating that they are not functionally redundant.
View Article and Find Full Text PDF