Field-effect transistors (FETs) form an established technology for sensing applications. However, recent advancements and use of high-performance multigate metal-oxide semiconductor FETs (double-gate, FinFET, trigate, gate-all-around) in computing technology, instead of bulk MOSFETs, raise new opportunities and questions about the most suitable device architectures for sensing integrated circuits. In this work, we propose pH and ion sensors exploiting FinFETs fabricated on bulk silicon by a fully CMOS compatible approach, as an alternative to the widely investigated silicon nanowires on silicon-on-insulator substrates.
View Article and Find Full Text PDFWe present a new method to analyze the cytoplasmic contents of single cells in large cell populations. This new method consists of an array of microchambers in which individual cells are collected, enclosed, and lysed to create a reaction mixture of the cytoplasm with extracellular detection agents. This approach was tested for the analysis of red blood cells in 10,000 microchambers in parallel.
View Article and Find Full Text PDF