Background: Spastic paraplegia 11 (SPG11) is the most prevalent form of autosomal recessive hereditary spastic paraplegia, resulting from biallelic pathogenic variants in the SPG11 gene (MIM *610844).
Methods: The proband is a 36-year-old female referred for genetic evaluation due to cognitive dysfunction, gait impairment, and corpus callosum atrophy (brain MRI was normal at 25-years-old). Diagnostic approaches included CGH array, next-generation sequencing, and whole transcriptome sequencing.
In the human genome, heterozygous sites refer to genomic positions with a different allele or nucleotide variant on the maternal and paternal chromosomes. Resolving these allelic differences by chromosomal copy, also known as phasing, is achievable on a short-read sequencer when using a library preparation method that captures long-range genomic information. TELL-Seq is a library preparation that captures long-range genomic information with the aid of molecular identifiers (barcodes).
View Article and Find Full Text PDFIn the human genome, heterozygous sites are genomic positions with different alleles inherited from each parent. On average, there is a heterozygous site every 1-2 kilobases (kb). Resolving whether two alleles in neighboring heterozygous positions are physically linked-that is, phased-is possible with a short-read sequencer if the sequencing library captures long-range information.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) are instrumental in identifying loci harboring common single-nucleotide variants (SNVs) that affect human traits and diseases. GWAS hits emerge in clusters, but the focus is often on the most significant hit in each trait- or disease-associated locus. The remaining hits represent SNVs in linkage disequilibrium (LD) and are considered redundant and thus frequently marginally reported or exploited.
View Article and Find Full Text PDFThe gene encodes the α-subunit of the voltage-gated cardiac sodium channel (Na1.5), a key player in cardiac action potential depolarization. Genetic variants in protein-coding regions of the human have been largely associated with inherited cardiac arrhythmias.
View Article and Find Full Text PDFBrugada syndrome (BrS) is an inherited electrical heart disease associated with a high risk of sudden cardiac death (SCD). The genetic characterization of BrS has always been challenging. Although several cardiac ion channel genes have been associated with BrS, is the only gene that presents definitive evidence for causality to be used for clinical diagnosis of BrS.
View Article and Find Full Text PDFThe cardiac voltage-gated sodium channel (gene: SCN5A, protein: Na1.5) is responsible for the sodium current that initiates the cardiomyocyte action potential. Research into the mechanisms of SCN5A gene expression has gained momentum over the last few years.
View Article and Find Full Text PDFTranscriptional latency of HIV is a last barrier to viral eradication. Chromatin-remodeling complexes and post-translational histone modifications likely play key roles in HIV-1 reactivation, but the underlying mechanisms are incompletely understood. We performed an RNAi-based screen of human lysine methyltransferases and identified the SET and MYND domain-containing protein 2 (SMYD2) as an enzyme that regulates HIV-1 latency.
View Article and Find Full Text PDFAberrant expression of the sodium channel gene (SCN5A) has been proposed to disrupt cardiac action potential and cause human cardiac arrhythmias, but the mechanisms of SCN5A gene regulation and dysregulation still remain largely unexplored. To gain insight into the transcriptional regulatory networks of SCN5A, we surveyed the promoter and first intronic regions of the SCN5A gene, predicting the presence of several binding sites for GATA transcription factors (TFs). Consistent with this prediction, chromatin immunoprecipitation (ChIP) and sequential ChIP (Re-ChIP) assays show co-occupancy of cardiac GATA TFs GATA4 and GATA5 on promoter and intron 1 SCN5A regions in fresh-frozen human left ventricle samples.
View Article and Find Full Text PDFPurpose: Brugada syndrome (BrS) is a form of cardiac arrhythmia which may lead to sudden cardiac death. The recommended genetic testing (direct sequencing of SCN5A) uncovers disease-causing SNVs and/or indels in ~20% of cases. Limited information exists about the frequency of copy number variants (CNVs) in SCN5A in BrS patients, and the role of CNVs in BrS-minor genes is a completely unexplored field.
View Article and Find Full Text PDFThe HIV-1 transactivator protein Tat is a critical regulator of HIV transcription primarily enabling efficient elongation of viral transcripts. Its interactions with RNA and various host factors are regulated by ordered, transient post-translational modifications. Here, we report a novel Tat modification, monomethylation at lysine 71 (K71).
View Article and Find Full Text PDFBackground: Brugada syndrome (BrS) is an inheritable cardiac disease associated with syncope, malignant ventricular arrhythmias and sudden cardiac death. The largest proportion of mutations in BrS is found in the SCN5A gene encoding the α-subunit of cardiac sodium channels (Nav1.5).
View Article and Find Full Text PDFBackground: Brugada syndrome (BrS) is a rare genetic cardiac arrhythmia that can lead to sudden cardiac death in patients with a structurally normal heart. Genetic variations in SCN5A can be identified in approximately 20-25% of BrS cases. The aim of our work was to determine the spectrum and prevalence of genetic variations in a Spanish cohort diagnosed with BrS.
View Article and Find Full Text PDFArginine methylation is a novel post-translational modification within the voltage-gated ion channel superfamily, including the cardiac sodium channel, NaV1.5. We show that NaV1.
View Article and Find Full Text PDFThe α subunit of the cardiac voltage-gated sodium channel, NaV1.5, provides the rapid sodium inward current that initiates cardiomyocyte action potentials. Here, we analyzed for the first time the post-translational modifications of NaV1.
View Article and Find Full Text PDFThe α-subunit of the cardiac voltage-gated sodium channel (NaV1.5) plays a central role in cardiomyocyte excitability. We have recently reported that NaV1.
View Article and Find Full Text PDFBrugada Syndrome (BrS) is a familial disease associated with sudden cardiac death. A 20%-25% of BrS patients carry genetic defects that cause loss-of-function of the voltage-gated cardiac sodium channel. Thus, 70%-75% of patients remain without a genetic diagnosis.
View Article and Find Full Text PDFThe essential transactivator function of the HIV Tat protein is regulated by multiple posttranslational modifications. Although individual modifications are well characterized, their crosstalk and dynamics of occurrence during the HIV transcription cycle remain unclear.We examine interactions between two critical modifications within the RNA-binding domain of Tat: monomethylation of lysine 51 (K51) mediated by Set7/9/KMT7, an early event in the Tat transactivation cycle that strengthens the interaction of Tat with TAR RNA, and acetylation of lysine 50 (K50) mediated by p300/KAT3B, a later process that dissociates the complex formed by Tat, TAR RNA and the cyclin T1 subunit of the positive transcription elongation factor b (P-TEFb).
View Article and Find Full Text PDFThe α subunit of the cardiac sodium channel (Na(v)1.5) is an essential protein in the initial depolarization phase of the cardiomyocyte action potential. Post-translational modifications such as phosphorylation are known to regulate Na(v)1.
View Article and Find Full Text PDFModification-specific antibodies are important tools to examine the dynamics and functions of posttranslational protein modifications in cells. Here, we describe in detail the generation of polyclonal antibodies specific for mono-, di-, and trimethylated lysine 51 within the HIV transactivator Tat. Lysine 51 is a highly conserved residue located in the RNA-binding region of Tat and the target of lysine methyltransferases KMT1E (SETDB1) and KMT7 (Set7/9).
View Article and Find Full Text PDFThe Tat protein of HIV-1 plays an essential role in HIV gene expression by promoting efficient elongation of viral transcripts. Posttranslational modifications of Tat fine-tune interactions of Tat with cellular cofactors and TAR RNA, a stem-loop structure at the 5' ends of viral transcripts. Here, we identify the lysine methyltransferase Set7/9 (KMT7) as a coactivator of HIV transcription.
View Article and Find Full Text PDFThe human immunodeficiency virus (HIV) Tat protein is acetylated by the transcriptional coactivator p300, a necessary step in Tat-mediated transactivation. We report here that Tat is deacetylated by human sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent class III protein deacetylase in vitro and in vivo. Tat and SIRT1 coimmunoprecipitate and synergistically activate the HIV promoter.
View Article and Find Full Text PDFtramtrack 69 (TTK69) is known to repress GAGA-mediated activation of the eve promoter in S2 cells. Here, we show that repression by TTK69 occurs in the absence of bona fide TTK69-binding sites on the template, indicating that it does not require the binding of TTK69 to DNA. Consistent with this interpretation, the POZ/BTB domain of TTK69, which does not bind DNA, is sufficient for repression.
View Article and Find Full Text PDFIn this study, we report the interaction of the Drosophila transcription factors Trithorax-like (GAGA) and tramtrack (TTK). This interaction is documented both in vitro, through GST pull-down assays, as well as in vivo, in yeast and Schneider S2 cells. GAGA and TTK share in common the presence of an N-terminal POZ/BTB domain that was found to be necessary and sufficient for GAGA-TTK interaction.
View Article and Find Full Text PDF