Background: Gaming disorder (GD) is a new official diagnosis in the International Classification of Diseases, 11th Revision, and with its recognition, the need to offer treatment for the condition has become apparent. More knowledge is needed about the type of treatment needed for this group of patients.
Objective: This study aims to evaluate the effectiveness and acceptability of a novel module-based psychological treatment for GD based on cognitive behavioral therapy and family therapy.
In this study, we explore the transformative potential of UTI-lizer, an emerging technology not yet commercially available. Our manuscript shows that UTI-lizer is a promising alternative for detecting the five main pathogens that cause urinary tract infections (UTIs). The results also indicate that digital dipsticks have the potential to uniquely provide UTI diagnostic quality on par with that of gold-standard testing, with the added benefits of ease of testing, rapid test handling time, and simple test equipment.
View Article and Find Full Text PDFWe have investigated the effects of high-energy electron irradiation on the oxidation of copper nanoparticles in environmental scanning transmission electron microscopy (ESTEM). The hemispherically shaped particles were oxidized in 3 mbar of O in a temperature range 100-200 °C. The evolution of the particles was recorded with sub-nanometer spatial resolution in situ in ESTEM.
View Article and Find Full Text PDFThe oxidation of transition metal surfaces is a process that takes place readily at ambient conditions and that, depending on the specific catalytic reaction at hand, can either boost or hamper activity and selectivity. Cu catalysts are no exception in this respect since they exhibit different oxidation states for which contradicting activities have been reported, as, for example, in the catalytic oxidation of CO. Here, we investigate the impact of low-coordination sites on nanofabricated Cu nanoparticles with engineered grain boundaries on the oxidation of the Cu surface under CO oxidation reaction conditions.
View Article and Find Full Text PDFBackground: Dysregulated complement activation, increased protein citrullination, and production of autoantibodies against citrullinated proteins are hallmarks of rheumatoid arthritis (RA). Citrullination is induced by immune cell-derived peptidyl-Arg deiminases (PADs), which are overactivated in the inflamed synovium. We characterized the effect of PAD2- and PAD4-induced citrullination on the ability of the plasma-derived serpin C1-inhibitor (C1-INH) to inhibit complement and contact system activation.
View Article and Find Full Text PDFTime-resolved measurements of changes in the size and shape of nanobiological objects and layers are crucial to understand their properties and optimize their performance. Optical sensing is particularly attractive with high throughput and sensitivity, and label-free operation. However, most state-of-the-art solutions require intricate modeling or multiparameter measurements to disentangle conformational or thickness changes of biomolecular layers from complex interfacial refractive index variations.
View Article and Find Full Text PDFChemical reactions involving nanoparticles often follow complex processes. In this respect, real-time probing of single nanoparticles under reactive conditions is crucial for uncovering the mechanisms driving the reaction pathway. Here, we have captured the oxidation of single Cu nanoparticles to unravel a sequential competitive activation of different mechanisms at temperatures 50-200 °C.
View Article and Find Full Text PDFComplement factor I (FI) is a central inhibitor of the complement system, and impaired FI function increases complement activation, contributing to diseases such as age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (aHUS). Genetic variation in complement factor I () has been identified in both AMD and aHUS, with more than half of these variants leading to reduced FI secretion levels. For many of the variants with normal FI secretion, however, functional implications are not yet known.
View Article and Find Full Text PDFGrains constitute the building blocks of polycrystalline materials and their boundaries determine bulk physical properties like electrical conductivity, diffusivity and ductility. However, the structure and evolution of grains in nanostructured materials and the role of grain boundaries in reaction or phase transformation kinetics are poorly understood, despite likely importance in catalysis, batteries and hydrogen energy technology applications. Here we report an investigation of the kinetics of (de)hydriding phase transformations in individual Pd nanoparticles.
View Article and Find Full Text PDFIn plasmon-mediated photocatalysis it is of critical importance to differentiate light-induced catalytic reaction rate enhancement channels, which include near-field effects, direct hot carrier injection, and photothermal catalyst heating. In particular, the discrimination of photothermal and hot electron channels is experimentally challenging, and their role is under keen debate. Here we demonstrate using the example of CO oxidation over nanofabricated neat Pd and AuPd alloy catalysts, how photothermal rate enhancement differs by up to 3 orders of magnitude for the same photon flux, and how this effect is controlled solely by the position of catalyst operation along the light-off curve measured in the dark.
View Article and Find Full Text PDFInvestigating a catalyst under relevant application conditions is experimentally challenging and parameters like reaction conditions in terms of temperature, pressure, and reactant mixing ratios, as well as catalyst design, may significantly impact the obtained experimental results. For Pt catalysts widely used for the oxidation of carbon monoxide, there is keen debate on the oxidation state of the surface at high temperatures and at/above atmospheric pressure, as well as on the most active surface state under these conditions. Here, we employ a nanoreactor in combination with single-particle plasmonic nanospectroscopy to investigate individual Pt catalyst nanoparticles localized inside a nanofluidic model pore during carbon monoxide oxidation at 2 bar in the 450-550 K temperature range.
View Article and Find Full Text PDFObjective: To examine whether C4d plasma levels correlate with treatment response and C4d kidney deposition in systemic lupus erythematosus (SLE) with lupus nephritis (LN).
Methods: C4d plasma levels were analyzed by a unique assay specifically detecting C4d arising from complement activation and C4 plasma levels were quantified with competitive ELISA. SLE patients with LN (71) and active SLE patients without LN (22) plus 145 controls were included.
In catalysis, nanoparticles enable chemical transformations and their structural and chemical fingerprints control activity. To develop understanding of such fingerprints, methods studying catalysts at realistic conditions have proven instrumental. Normally, these methods either probe the catalyst bed with low spatial resolution, thereby averaging out single particle characteristics, or probe an extremely small fraction only, thereby effectively ignoring most of the catalyst.
View Article and Find Full Text PDFNanoconfinement in porous catalysts may induce reactant concentration gradients inside the pores due to local conversion. This leads to inefficient active material use since parts of the catalyst may be trapped in an inactive state. Experimentally, these effects remain unstudied due to material complexity and required high spatial resolution.
View Article and Find Full Text PDFFactor I (FI) is one of the main inhibitors of complement activity, and numerous rare coding variants have been reported in patients with age-related macular degeneration, atypical hemolytic uremic syndrome and C3 glomerulopathy. Since many of these variants are of unknown clinical significance, this study aimed to determine the effect of rare coding variants in the complement factor I (CFI) gene on FI expression. We measured FI levels in plasma samples of carriers of rare coding variants and in vitro in the supernatants of epithelial cells expressing recombinant FI.
View Article and Find Full Text PDFThree-layer core-shell-nanoparticle nanoarchitectures exhibit properties not achievable by single-element nanostructures alone and have great potential to enable rationally designed functionality. However, nanofabrication strategies for crafting core-shell-nanoparticle structure arrays on surfaces are widely lacking, despite the potential of basically unlimited material combinations. Here we present a nanofabrication approach that overcomes this limitation.
View Article and Find Full Text PDFCopper nanostructures are ubiquitous in microelectronics and heterogeneous catalysis and their oxidation is a topic of high current interest and broad relevance. It relates to important questions, such as catalyst active phase, activity and selectivity, as well as fatal failure of microelectronic devices. Despite the obvious importance of understanding the mechanism of Cu nanostructure oxidation, numerous open questions remain, including under what conditions homogeneous oxide layer growth occurs and when the nanoscale Kirkendall void forms.
View Article and Find Full Text PDFStudying single catalyst nanoparticles, during reaction, eliminates averaging effects that are an inherent limitation of ensemble experiments. It enables establishing structure-function correlations beyond averaged properties by including particle-specific descriptors such as defects, chemical heterogeneity and microstructure. Driven by these prospects, several single particle catalysis concepts have been implemented.
View Article and Find Full Text PDFObjective: Because currently available assays that measure circulating immune complexes (ICx) are suboptimal, a novel assay was recently developed measuring C4d, a stable product of activation of the classical complement pathway. The present study aimed to establish the value of measuring plasma C4d levels in a longitudinal cohort of patients with severe refractory SLE who were treated with a combination therapy of rituximab with belimumab (RTX+BLM).
Methods: Fifteen patients with SLE who were treated with RTX+BLM in a phase 2A, open label study were included to sequentially measure plasma C4d levels and correlated to well-established markers of ICx-formation, that is, autoantibodies against double-stranded (ds) DNA, autoantibodies against C1q and proteinuria.
The ongoing quest to develop single-particle methods for the in situ study of heterogeneous catalysts is driven by the fact that heterogeneity in terms of size, shape, grain structure, and composition is a general feature among nanoparticles in an ensemble. This heterogeneity hampers the generation of a deeper understanding for how these parameters affect catalytic properties. Here we present a solution that in a single benchtop experimental setup combines single-particle plasmonic nanospectroscopy with mass spectrometry for gas phase catalysis under reaction conditions at high temperature.
View Article and Find Full Text PDFThe ability to study oxidation, reduction, and other chemical transformations of nanoparticles in real time and under realistic conditions is a nontrivial task due to their small dimensions and the often challenging environment in terms of temperature and pressure. For scrutinizing oxidation of metal nanoparticles, visible light optical spectroscopy based on the plasmonic properties of the metal has been established as a suitable method. However, directly relying on the plasmonic resonance of metal nanoparticles as a built-in probe to track oxidation has a number of drawbacks, including the loss of optical contrast in the late oxidation stages.
View Article and Find Full Text PDFWe demonstrate the transfer of arrays of nanofabricated noble metal and alloy nanostructures obtained by high-temperature annealing on a flat parent support onto optical fibers, to create a hysteresis-free fiber optic nanoplasmonic hydrogen sensor. This work enables the integration of complex nanofabricated structures and their arrangements in tailored arrays with fiber optics to realize optical sensors, which will find application in a wide range of disciplines.
View Article and Find Full Text PDFBackground: IgE sensitization is usually associated with allergy-related diseases, but may also occur in asymptomatic individuals. The clinical importance of IgE antibody concentrations in the interval 0.1-0.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a progressive disease of the central retina and the leading cause of irreversible vision loss in the western world. The involvement of abnormal complement activation in AMD has been suggested by association of variants in genes encoding complement proteins with disease development. A low-frequency variant (p.
View Article and Find Full Text PDF