Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded , with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy .
View Article and Find Full Text PDFMoyamoya arteriopathy (MMA) is a rare cerebrovascular disorder that causes recurrent ischemic and hemorrhagic strokes, leading young patients to severe neurological deficits. The pathogenesis of MMA is still unknown. The disease onset in a wide number of pediatric cases raises the question of the role of genetic factors in the disease's pathogenesis.
View Article and Find Full Text PDFBackground Aims: Advanced therapy medicinal products (ATMPs) are novel drugs based on genes, cells or tissues developed to treat many different diseases. Stability studies of each new ATMP need to be performed to define its shelf life and guarantee efficacy and safety upon infusion, and these are presently based on guidelines originally drafted for standard pharmaceutical drugs, which have properties and are stored in conditions quite different from cell products. The aim of this report is to provide evidence-based information for stability studies on ATMPs that will facilitate the interlaboratory harmonization of practices in this area.
View Article and Find Full Text PDFMoyamoya arteriopathy (MA) is a rare cerebrovascular disorder characterized by ischemic/hemorrhagic strokes. The pathophysiology is unknown. A deregulation of vasculogenic/angiogenic/inflammatory pathways has been hypothesized as a possible pathophysiological mechanism.
View Article and Find Full Text PDFDendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established.
View Article and Find Full Text PDFMalignant Pleural Mesothelioma (MPM) is a rare and aggressive neoplasm of the pleural mesothelium, mainly associated with asbestos exposure and still lacking effective therapies. Modern targeted biological strategies that have revolutionized the therapy of other solid tumors have not had success so far in the MPM. Combination immunotherapy might achieve better results over chemotherapy alone, but there is still a need for more effective therapeutic approaches.
View Article and Find Full Text PDFMoyamoya angiopathy (MMA) is a peculiar cerebrovascular condition characterized by progressive steno-occlusion of the terminal part of the internal carotid arteries (ICAs) and their proximal branches, associated with the development of a network of fragile collateral vessels at the base of the brain. The diagnosis is essentially made by radiological angiographic techniques. MMA is often idiopathic (moyamoya disease-MMD); conversely, it can be associated with acquired or hereditary conditions (moyamoya Syndrome-MMS); however, the pathophysiology underlying either MMD or MMS has not been fully elucidated to date, and this poor knowledge reflects uncertainties and heterogeneity in patient management.
View Article and Find Full Text PDFThe pathophysiological mechanisms of Moyamoya angiopathy (MA), which is a rare cerebrovascular condition characterized by recurrent ischemic/hemorrhagic strokes, are still largely unknown. An imbalance of vasculogenic/angiogenic mechanisms has been proposed as one possible disease aspect. Circulating endothelial progenitor cells (cEPCs) have been hypothesized to contribute to vascular remodeling of MA, but it remains unclear whether they might be considered a disease effect or have a role in disease pathogenesis.
View Article and Find Full Text PDFBackground: The efficacy of dendritic cell (DC) immunotherapy as a single therapeutic modality for the treatment of glioblastoma (GBM) patients remains limited. In this study, we evaluated in patients with GBM recurrence the immune-mediated effects of DC loaded with autologous tumor lysate combined with temozolomide (TMZ) or tetanus toxoid (TT).
Methods: In the phase I-II clinical study DENDR2, 12 patients were treated with 5 DC vaccinations combined with dose-dense TMZ.
Dendritic cells (DC) are the most potent antigen-presenting cells, strongly inducers of T cell-mediated immune responses and, as such, broadly used as vaccine adjuvant in experimental clinical settings. DC are widely generated from human monocytes following in vitro protocols which require 5-7 days of differentiation with GM-CSF and IL-4 followed by 2-3 days of activation/maturation. In attempts to shorten the vaccine's production, Fast-DC protocols have been developed.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are multipotent cells able to differentiate into multiple cell types, including adipocytes, osteoblasts, and chondrocytes. The role of adipose-derived stem cells (ADSCs) in cancers is significantly relevant. They seem to be involved in the promotion of tumour development and progression and relapse processes.
View Article and Find Full Text PDFOver the last few years, human microfragmented adipose tissue (MFAT), containing significant levels of mesenchymal stromal cells (MSCs) and obtained from fat lipoaspirate (LP) through a minimal manipulation in a closed system device, has been successfully used in aesthetic medicine as well as in orthopedic and general surgery. Interestingly, in orthopedic diseases, this ready-to-use adipose tissue cell derivative seems to have a prolonged time efficacy even upon a single shot injection into osteoarthritic tissues. Here, we investigated the long-term survival and content of MSCs as well the anti-inflammatory activity of LP and its derived MFAT in vitro, with the aim to better understand a possible in vivo mechanism of action.
View Article and Find Full Text PDFBackground: GENetics of mOyaMoyA (GEN-O-MA) project is a multicenter observational study implemented in Italy aimed at creating a network of centers involved in moyamoya angiopathy (MA) care and research and at collecting a large series and bio-repository of MA patients, finally aimed at describing the disease phenotype and clinical course as well as at identifying biological or cellular markers for disease progression. The present paper resumes the most important study methodological issues and preliminary results.
Methods: Nineteen centers are participating to the study.
Moyamoya angiopathy (MA) is a cerebrovascular disease determining a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and their proximal branches and the compensatory development of abnormal "moyamoya" vessels. MA occurs as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes) including several heritable conditions such as Down syndrome, neurofibromatosis type 1 and other genomic defects. Although the mechanism that links MA to these genetic syndromes is still unclear, it is believed that the involved genes may contribute to the disease susceptibility.
View Article and Find Full Text PDFThe complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days.
View Article and Find Full Text PDFBackground: Moyamoya disease (MMD) is a slowly progressing steno-occlusive cerebrovascular disease. The typical moyamoya vessels, which originate from an initial stenosis of the internal carotid, highlight that increased and/or abnormal angiogenic, vasculogenic and arteriogenic processes are involved in the disease pathophysiology.
Objective: Herein, we summarize the current knowledge on the most important signaling pathways involved in MMD vessel formation, particularly focusing on the expression of growth factors and function of endothelial progenitor cells (EPCs).
Background: The pathogenesis of moyamoya disease (MMD) is still unknown. The detection of inflammatory molecules such as cytokines, chemokines and growth factors in MMD patients' biological fluids supports the hypothesis that an abnormal angiogenesis is implicated in MMD pathogenesis. However, it is unclear whether these anomalies are the consequences of the disease or rather causal factors as well as these mechanisms remain insufficient to explain the pathophysiology of MMD.
View Article and Find Full Text PDFUnlabelled: Cell therapy based on dendritic cells (DCs) pulsed with tumor lysate is a promising approach in addition to conventional therapy for the treatment of patients with glioblastoma (GB). The success of this approach strongly depends on the ability to generate high-quality, functionally mature DCs (mDCs), with a high level of standardization and in compliance with Good Manufacturing Practices. In the cell factory of the Carlo Besta Foundation, two phase I clinical trials on immunotherapy with tumor lysate-loaded DCs as treatment for GB are ongoing.
View Article and Find Full Text PDFBrain microvascular endothelial cells (BMVECs) have an important role in the constitution of the blood-brain barrier (BBB). The BBB is involved in the disease processes of a number of neurological disorders in which its permeability increases. Isolation of BMVECs could elucidate the mechanism involved in these processes.
View Article and Find Full Text PDFRecurrent glioblastomas (GBs) are highly aggressive tumors associated with a 6-8 mo survival rate. In this study, we evaluated the possible benefits of an immunotherapeutic strategy based on mature dendritic cells (DCs) loaded with autologous tumor-cell lysates in 15 patients affected by recurrent GB. The median progression-free survival (PFS) of this patient cohort was 4.
View Article and Find Full Text PDFBackground: Brain microvascular endothelial cells (BMVECs) constitute the primary limitation for passage of ions and molecules from the blood into the brain through the blood brain barrier. Numerous multi-step procedures for isolating and culturing BMVECs have been described. However, each one demonstrates major limitations in purity of culture and/or low proliferation rate.
View Article and Find Full Text PDFImmune-based treatments represent a promising new class of therapy designed to boost the immune system to specifically eradicate malignant cells. Immunotherapy may generate specific anti-tumor immune responses, and dendritic cells (DC), professional antigen-presenting cells, are widely used in experimental cancer immunotherapy. Several reports describe methods for the generation of mature, antigen-pulsed DC for clinical use.
View Article and Find Full Text PDFMesenchymal stem cell (MSC) therapy is considered one of the most promising approaches for treating different neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). We previously characterized a subpopulation of human skeletal muscle-derived stem cells (SkmSCs) with MSC-like characteristics that differentiate into the neurogenic lineage in vitro. In the present study, we evaluated the SkmSC therapeutic effects in the most characterized model of spontaneous motor neuron degeneration, the Wobbler (Wr) mouse.
View Article and Find Full Text PDF