Objective: The aim of this study was to better understand how mixed lineage leukemia (MLL) fusion proteins deregulate the expression of genes critical for leukemia.
Materials And Methods: The transforming domain of one of the most common MLL fusion partners, AF9, was immunopurified after expression in myeloblastic M1 cells, and associating proteins were identified by mass spectrometric analysis. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction was used to determine how binding of associating proteins compare across Hoxa9 and Meis1 in cell lines with and without MLL fusion proteins and how binding is altered during gene down-regulation and differentiation.
Preclinical microbiology and infectious diseases courses too often primarily depend on PowerPoint lectures and notes, combined with multiple-choice tests, as their primary teaching tools. This strategy sets low expectations for students, encouraging short-term memory and discouraging understanding and long-term memory. These methods also fail to stimulate active participation, collaborative learning, and two-way communication with the professor, and they do not respect the students' diverse talents and ways of learning.
View Article and Find Full Text PDFChimeric proteins joining the histone methyltransferase MLL with various fusion partners trigger distinctive lymphoid and myeloid leukemias. Here, we immunopurified proteins associated with ENL, a protein commonly fused to MLL. Identification of these ENL-associated proteins (EAPs) by mass spectrometry revealed enzymes with a known role in transcriptional elongation (RNA polymerase II C-terminal domain kinase [RNAPolII CTD] positive transcription elongation factor b [pTEFb]), and in chromatin modification (histone-H3 methyltransferase DOT1L) as well as other frequent MLL partners (AF4, AF5q31, and LAF4), and polycomb group members (RING1, CBX8, and BCoR).
View Article and Find Full Text PDFActing on a broad spectrum of extracellular, intracellular, and membrane-associated substrates, the matrix metalloproteinases (MMPs) are critical to the biological processes of organisms; when aberrantly expressed, many pathological conditions may be born or exacerbated. The prospect of MMP inhibition for therapeutic benefit in cancer, cardiovascular disease, and stroke is reviewed here. MMP inhibitor (MMPI) development constitutes an important branch of research in both academic and industrial settings and advances our knowledge on the structure-function relationship of MMPs.
View Article and Find Full Text PDF