Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging.
View Article and Find Full Text PDFDiffuse Intrinsic Pontine Gliomas (DIPGs) are deadly brain cancers in children for which there is no effective treatment. This can partly be attributed to preclinical models that lack essential elements of the in vivo tissue environment, resulting in treatments that appear promising preclinically, but fail to result in effective cures. Recently developed co-culture models combining stem cell-derived brain organoids with brain cancer cells provide tissue dimensionality and a human-relevant tissue-like microenvironment.
View Article and Find Full Text PDFRepressor element-1 silencing transcription factor (REST) is a transcriptional repressor involved in neurodevelopment and neuroprotection. REST forms a complex with the REST corepressors, CoREST1, CoREST2, or CoREST3 (encoded by , , and , respectively). Emerging evidence suggests that the CoREST family can target unique genes independently of REST, in various neural and glial cell types during different developmental stages.
View Article and Find Full Text PDFFriedreich's ataxia (FRDA) is a rare neurodegenerative disease caused by an expansion of a GAA repeat sequence within the Frataxin (FXN) gene. Prominent regions of neurodegeneration include sensory neurons within the dorsal root ganglia. Here we present a set of genetically modified FRDA induced pluripotent stem cell (iPSC) lines that carry an inducible neurogenin-2 (NGN2) expression cassette.
View Article and Find Full Text PDFThe pro-neural transcription factor neurogenin-2 (NGN2) possesses the ability to rapidly and effectively transform stem cells into fully operational neurons. Here we report the successful generation of a modified H9 human embryonic H9 stem cell line containing a doxycycline (DOX) inducible NGN2 expression construct featuring a floxed Blasticidin/mApple selection module in the safe-harbor locus CLYBL. This cell line retains its pluripotent state in the absence of DOX, yet readily transitions into a neuronal state upon DOX introduction.
View Article and Find Full Text PDFInsect nephrocytes are ultrafiltration cells that remove circulating proteins and exogenous toxins from the haemolymph. Experimental disruption of nephrocyte development or function leads to systemic impairment of insect physiology as evidenced by cardiomyopathy, chronic activation of immune signalling and shortening of lifespan. The genetic and structural basis of the nephrocyte's ultrafiltration mechanism is conserved between arthropods and mammals, making them an attractive model for studying human renal function and systemic clearance mechanisms in general.
View Article and Find Full Text PDFBackground: Variants in genes encoding nuclear pore complex (NPC) proteins are a newly identified cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent reports describing NUP93 variants suggest these could be a significant cause of paediatric onset SRNS. We report NUP93 cases in the UK and demonstrate in vivo functional effects of Nup93 depletion in a fly (Drosophila melanogaster) nephrocyte model.
View Article and Find Full Text PDFDirected neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a "one-glove-fits-all" approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.
View Article and Find Full Text PDFSensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored.
View Article and Find Full Text PDFNeurodegenerative diseases are generally characterized by a progressive loss of neuronal subpopulations, with no available cure to date. One of the main reasons for the limited clinical outcomes of new drug formulations is the lack of appropriate in vitro human cell models for research and validation. Stem cell technologies provide an opportunity to address this challenge by using patient-derived cells as a platform to test various drug formulations, including particle-based drug carriers.
View Article and Find Full Text PDFDevelopment of eye tissue is initiated by a conserved set of transcription factors termed retinal determination network (RDN). In the fruit fly Drosophila melanogaster, the zinc-finger transcription factor Glass acts directly downstream of the RDN to control identity of photoreceptor as well as non-photoreceptor cells. Tight control of spatial and temporal gene expression is a critical feature during development, cell-fate determination as well as maintenance of differentiated tissues.
View Article and Find Full Text PDFTissue fibrosis, an accumulation of extracellular matrix proteins such as collagen, accompanies cardiac ageing in humans and this is linked to an increased risk of cardiac failure. The mechanisms driving age-related tissue fibrosis and cardiac dysfunction are unclear, yet clinically important. Drosophila is amenable to the study of cardiac ageing as well as collagen deposition; however it is unclear whether collagen accumulates in the ageing Drosophila heart.
View Article and Find Full Text PDF