Publications by authors named "Sara Matson"

Recent studies demonstrate that regulated secretion in probably all mammalian cells, from gonadotropes to gametes, utilizes similar signaling systems, intracellular Ca(2+) regulation, Ca(2+)-dependent proteins, cytoskeletal participation, and SNARE-mediated fusion. Thus, highly specialized cells, like sperm and eggs, should no longer be considered to have evolved a cell-type specific secretory mechanism. In gametes, Ca(2+)-dependent proteins and enzymes transduce elevations of intracellular Ca(2+) into secretory events, i.

View Article and Find Full Text PDF

Although mitogen-activated protein kinase (MAPK) is a well-known cell cycle regulator, emerging studies have also implicated its activity in the regulation of intracellular calcium concentration ([Ca2+](i)) and secretion. Those studies raise the hypothesis that MAPK activity during oocyte maturation and early fertilization is required for normal egg Ca2+ oscillations and cortical granule (CG) secretion. We extend the findings of [Lee, B.

View Article and Find Full Text PDF

Novel methods of egg activation in human assisted reproductive technologies and animal somatic cell nuclear transfer are likely to alter the signalling process that occurs during normal fertilization. Intracytoplasmic sperm injection (ICSI) bypasses the normal processes of the acrosome reaction, sperm-egg fusion, and processing of the sperm plasma membrane, as well as alters some parameters of intracellular calcium ([Ca(2+)](i)) dynamics (reported previously by Kurokawa and Fissore (2003)). Herein, we extend these studies to determine if ICSI alters the activity of the Ca(2+)-dependent protein, Ca(2+)/calmodulin-dependent kinase II (CaMKII), which is responsible for the completion of meiosis in vertebrate eggs.

View Article and Find Full Text PDF

Although recent studies have demonstrated the importance of calcium/calmodulin (Ca(2+)/CAM) signaling in mammalian fertilization, many targets of Ca(2+)/CAM have not been investigated and represent potentially important regulatory pathways to transduce the Ca2+ signal that is responsible for most events of egg activation. A well-established Ca(2+)/CAM-dependent enzyme is myosin light chain kinase (MYLK2), the downstream target of which is myosin II, an isoform of myosin known to be important in cytokinesis. In fertilized mouse eggs, established inhibitors of MYLK2 and myosin II were investigated for their effects on events of egg activation.

View Article and Find Full Text PDF

Although the dynamics of oscillations of cytosolic Ca2+ concentration ([Ca2+]cyt) play important roles in early mammalian development, the impact of the duration when [Ca2+]cyt is elevated is not known. To determine the sensitivity of fertilization-associated responses [i.e.

View Article and Find Full Text PDF

Elucidation of the biochemical mechanisms by which specific proteins transduce the all important intracellular calcium (Ca2+) signal at fertilization into events of egg activation will increase our understanding of the regulation of the onset of development and the extent to which these signals can be experimentally modified. Previously, we reported data supporting the hypothesis that mouse eggs have the capability to generate oscillations of the activity of Ca2+ and calmodulin-dependent kinase II (CaMKII), regulating the cell cycle and secretion. This study directly demonstrates transient increases of enzyme activity in relatively close synchrony with Ca2+ oscillations for the first hour of fertilization in single mouse eggs monitored for both Ca2+ and CaMKII activity.

View Article and Find Full Text PDF

Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium.

View Article and Find Full Text PDF