The HIV-1 p6 Gag protein contains two late assembly (l-) domains that recruit proteins of the endosomal sorting complex required for transport (ESCRT) pathway to mediate membrane fission between the nascent virion and the cell membrane. It was recently demonstrated that mutation of the highly conserved Ser-40 to Phe (S40F) disturbs CA-SP1 processing, virus morphogenesis, and infectivity. It also causes the formation of filopodia-like structures, while virus release remains unaffected.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2013
The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian influenza isolates. The structures of full-length PB1-F2 of the influenza strains Pandemic flu 2009 H1N1, 1918 Spanish flu H1N1, Bird flu H5N1 and H1N1 PR8, have been characterized by NMR and CD spectroscopy. The study was conducted using chemically synthesized full-length PB1-F2 protein and fragments thereof.
View Article and Find Full Text PDFThe human immunodeficiency virus type 1 (HIV-1) p6 protein has recently been recognized as a docking site for several cellular and viral binding partners and is important for the formation of infectious viruses. Most of its known functions are suggested to occur under hydrophobic conditions near the cytoplasmic membrane, where the protein is presumed to exist in its most structured state. Although p6 is involved in manifold specific interactions, the protein has previously been considered to possess a random structure in aqueous solution.
View Article and Find Full Text PDFThe 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation.
View Article and Find Full Text PDFBackground: Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear.
Results: Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy.
Background: The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L-) domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX), is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6.
View Article and Find Full Text PDFBackground: Cyclophilin A (CypA) represents a potential target for antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication, although the mechanism through which CypA modulates HIV-1 infectivity still remains unclear. The interaction of HIV-1 viral protein R (Vpr) with the human peptidyl prolyl isomerase CypA is known to occur in vitro and in vivo. However, the nature of the interaction of CypA with Pro-35 of N-terminal Vpr has remained undefined.
View Article and Find Full Text PDF