In the past few decades, advances in 3D imaging have created new opportunities for reverse genetic screens. Rapidly growing datasets of 3D images of genetic knockouts require high-throughput, automated computational approaches for identifying and characterizing new phenotypes. However, exploratory, discovery-oriented image analysis pipelines used to discover these phenotypes can be difficult to validate because, by their nature, the expected outcome is not known .
View Article and Find Full Text PDFDue to the complexity of fish skulls, previous attempts to classify craniofacial phenotypes have relied on qualitative features or sparce 2D landmarks. In this work we aim to identify previously unknown 3D craniofacial phenotypes with a semiautomated pipeline in adult zebrafish mutants. We first estimate a synthetic 'normative' zebrafish template using MicroCT scans from a sample pool of wild-type animals using the Advanced Normalization Tools (ANTs).
View Article and Find Full Text PDFObjectives: Asymmetry has been noted in the human craniofacial region in several pathological conditional and growth abnormalities, often with a directional predilection. Physiological asymmetry has also been reported in normal adults and adolescents, with certain regions of the cranioskeleton, such as the mandible, displaying prevalent asymmetry. However, the timing at which such asymmetries arise has not been evaluated.
View Article and Find Full Text PDFHmx1 encodes a homeodomain transcription factor expressed in the developing lateral craniofacial mesenchyme, retina and sensory ganglia. Mutation or mis-regulation of Hmx1 underlies malformations of the eye and external ear in multiple species. Deletion or insertional duplication of an evolutionarily conserved region (ECR) downstream of Hmx1 has recently been described in rat and cow, respectively.
View Article and Find Full Text PDF