Fighting smart diseases requires smart vaccines. Novel ways to present protective immunogenic peptide epitopes to human immune systems are needed. Herein, we focus on Self Assembling Protein Nanoparticles (SAPNs) as scaffolds/platforms for vaccine delivery that produce strong immune responses against Toxoplasma gondii in HLA supermotif, transgenic mice.
View Article and Find Full Text PDFWe designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8 HLA-A03-11 supertypes-restricted epitopes from antigens expressed during 's lifecycle, the universal CD4 T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8 T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage.
View Article and Find Full Text PDFBackground: The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed.
View Article and Find Full Text PDFCurrent influenza vaccines should be improved by the addition of universal influenza vaccine antigens in order to protect against multiple virus strains. We used our self-assembling protein nanoparticles (SAPNs) to display the two conserved influenza antigens M2e and Helix C in their native oligomerization states. To further improve the immunogenicity of the SAPNs, we designed and incorporated the TLR5 agonist flagellin into the SAPNs to generate self-adjuvanted SAPNs.
View Article and Find Full Text PDFNucleoporins represent the molecular building blocks of nuclear pore complexes (NPCs), which mediate facilitated macromolecular trafficking between the cytoplasm and nucleus of eukaryotic cells. Phenylalanine-glycine (FG) repeat motifs are found in about one-third of the nucleoporins, and they provide major binding or docking sites for soluble transport receptors. We have shown recently that localization of the FG-repeat domains of vertebrate nucleoporins Nup153 and Nup214 within the NPC is influenced by its transport state.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) facilitate macromolecular exchange between the nucleus and cytoplasm of eukaryotic cells. The vertebrate NPC is composed of approximately 30 different proteins (nucleoporins), of which around one third contain phenylalanine-glycine (FG)-repeat domains that are thought to mediate the main interaction between the NPC and soluble transport receptors. We have recently shown that the FG-repeat domain of Nup153 is flexible within the NPC, although this nucleoporin is anchored to the nuclear side of the NPC.
View Article and Find Full Text PDF