Publications by authors named "Sara M Lindsay"

We developed an assessment to track changes in understanding about marine primary production, a key concept taught across our undergraduate curriculum. Question content was informed by investigating student misunderstandings, conducting faculty interviews, and mapping primary production concepts to the curriculum. Content questions were paired with questions asking students how confident they were in their answers.

View Article and Find Full Text PDF

Polychaetes are common in most marine habitats and dominate many infaunal communities. Functional guild classification based on taxonomic identity and morphology has linked community structure to ecological function. The functional guilds now include osmotrophic siboglinids as well as sipunculans, echiurans, and myzostomes, which molecular genetic analyses have placed within Annelida.

View Article and Find Full Text PDF

Understanding dispersal and its complex variables is critical to understanding the ecology and evolution of life histories of species, but research on dispersal tends to reflect or emphasize particular disciplines, such as population genetics, functional morphology, evolutionary and developmental biology, physiology, and biophysics, or to emphasize a particular clade or functional group (e.g., fish, planktotrophs or lecithotrophs, pelagic or benthic organisms) in marine ecosystems.

View Article and Find Full Text PDF

Many marine invertebrates are able to regenerate lost tissue following injury, but regeneration can come at a cost to individuals in terms of reproduction, behavior and physiological condition, and can have effects that reach beyond the individual to impact populations, communities, and ecosystems. For example, removal and subsequent regeneration of clams' siphons, polychaetes' segments, and brittlestars' arms can represent significant energetic input to higher trophic levels. In marine soft-sediment habitats, injury changes infaunal bioturbation rates and thus secondarily influences sediment-mediated competition, adult-larval interactions, and recruitment success.

View Article and Find Full Text PDF

Chemoreception in marine invertebrates mediates a variety of ecologically important behaviors including defense, reproduction, larval settlement and recruitment, and feeding. The sensory pathways that regulate deposit-feeding activity by polychaetes living in sedimentary habitats are of particular interest because such feeding has profound effects on the physical and chemical properties of the habitat. Nevertheless, little is known concerning the molecular mechanisms of chemical signal transduction associated with deposit feeding and other behaviors in polychaetes.

View Article and Find Full Text PDF

Evidence suggests that ciliated sensory structures on the feeding palps of spionid polychaetes may function as chemoreceptors to modulate deposit-feeding activity. To investigate the probable sensory nature of these ciliated cells, we used immunohistochemistry, epi-fluorescence, and confocal laser scanning microscopy to label and image sensory cells, nerves, and their organization relative to the anterior central nervous system in several spionid polychaete species. Antibodies directed against acetylated alphatubulin were used to label the nervous system and detail the innervation of palp sensory cells in all species.

View Article and Find Full Text PDF

Freeman and Byers (Reports, 11 August 2006, p. 831) presented evidence for the rapid evolution of antipredator defenses in the mussel Mytilus edulis. However, their analysis is confounded by three issues.

View Article and Find Full Text PDF

In marine sedimentary habitats, chemoreception is thought to coordinate feeding in many deposit-feeding invertebrates such as polychaetes, snails, and clams. Relatively little is known, however, about the chemosensory structures and mechanism of signal transduction in deposit feeders. Using electron microscopy, confocal laser scanning microscopy (CLSM), and immunohistochemistry, we investigated the structure and function of putative chemosensory cells on the feeding appendages of a deposit-feeding polychaete species, Dipolydora quadrilobata.

View Article and Find Full Text PDF

The zebrafish chemosensory systems of olfaction, taste and solitary chemosensory cells (SCCs) are established during the first week after fertilization (a.f.).

View Article and Find Full Text PDF