Autophagy is important for many physiological processes; and disordered autophagy can contribute to the pathogenesis of a broad range of systemic disorders. is a useful model organism for studying the genetics of autophagy, however, current methods for studying autophagy are labor-intensive and not readily amenable to high-throughput procedures. Here we describe a fluorescent reporter, GFP::LGG-1::mKate2, which is useful for monitoring autophagic flux in live animals.
View Article and Find Full Text PDFWe describe a proband evaluated through the Undiagnosed Diseases Network (UDN) who presented with microcephaly, developmental delay, and refractory epilepsy with a de novo p.Ala47Thr missense variant in the protein phosphatase gene, PPP5C. This gene has not previously been associated with a Mendelian disease, and based on the population database, gnomAD, the gene has a low tolerance for loss-of-function variants (pLI = 1, o/e = 0.
View Article and Find Full Text PDFThe dynein motor complex is thought to aid in homolog pairing in many organisms by moving chromosomes within the nuclear periphery to promote and test homologous interactions. This precedes synaptonemal complex (SC) formation during homolog synapsis, which stabilizes homolog proximity during recombination. We observed that depletion of the dynein light chain (DLC-1) in Caenorhabditis elegans irreversibly prevents synapsis, causing an increase in off-chromatin formation of SC protein foci with increasing temperature.
View Article and Find Full Text PDF