Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic "isoprenol pathways," which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non-natural alkyl-monophosphates (alkyl-Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non-natural substrates bound in the active site.
View Article and Find Full Text PDFTryprostatin A and B are prenylated, tryptophan-containing, diketopiperazine natural products, displaying cytotoxic activity through different mechanisms of action. The presence of the 6-methoxy substituent on the indole moiety of tryprostatin A was shown to be essential for the dual inhibition of topoisomerase II and tubulin polymerization. However, the inability to perform late-stage modification of the indole ring has limited the structure-activity relationship studies of this class of natural products.
View Article and Find Full Text PDFIn this study we uncover two genes in Lactobacillus brevis ATCC 367, tstT and tstR, encoding for a rhodanese and a transcriptional regulator involved in cyanide detoxification. TstT (LVIS_0852) belongs to a new class of thiosulphate:cyanide sulphurtransferases. We found that TstR (LVIS_0853) modulates both the expression and the activity of the downstream-encoded tstT.
View Article and Find Full Text PDF