Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture.
View Article and Find Full Text PDFNeuromorphological defects underlie neurodevelopmental disorders and functional defects. We identified a function for Rpsa in regulating neuromorphogenesis using in utero electroporation to knockdown Rpsa, resulting in apical dendrite misorientation, fewer/shorter extensions, and decreased spine density with altered spine morphology in upper neuronal layers and decreased arborization in upper/lower cortical layers. Rpsa knockdown disrupts multiple aspects of cortical development, including radial glial cell fiber morphology and neuronal layering.
View Article and Find Full Text PDFKinases are essential regulators of a variety of cellular signaling processes, including neurite formation-a foundational step in neurodevelopment. Aberrant axonal sprouting and failed regeneration of injured axons are associated with conditions like traumatic injury, neurodegenerative disease, and seizures. Investigating the mechanisms underlying neurite formation will allow for identification of potential therapeutics.
View Article and Find Full Text PDFGSTP proteins are metabolic enzymes involved in the removal of oxidative stress and intracellular signaling and also have inhibitory effects on JNK activity. However, the functions of Gstp proteins in the developing brain are unknown. In mice, there are three Gstp proteins, Gstp1, 2 and 3, whereas there is only one GSTP in humans.
View Article and Find Full Text PDFProper neurite formation is essential for appropriate neuronal morphology to develop and defects at this early foundational stage have serious implications for overall neuronal function. Neuritogenesis is tightly regulated by various signaling mechanisms that control the timing and placement of neurite initiation, as well as the various processes necessary for neurite elongation to occur. Kinases are integral components of these regulatory pathways that control the activation and inactivation of their targets.
View Article and Find Full Text PDFChromosome 17p13.3 is a region of genomic instability that is linked to different rare neurodevelopmental genetic diseases, depending on whether a deletion or duplication of the region has occurred. Chromosome microdeletions within 17p13.
View Article and Find Full Text PDFDamage to respiratory neural circuitry and consequent loss of diaphragm function is a major cause of morbidity and mortality in individuals suffering from traumatic cervical spinal cord injury (SCI). Repair of CNS axons after SCI remains a therapeutic challenge, despite current efforts. SCI disrupts inspiratory signals originating in the rostral ventral respiratory group (rVRG) of the medulla from their phrenic motor neuron (PhMN) targets, resulting in loss of diaphragm function.
View Article and Find Full Text PDF