Post-error slowing (PES) is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants) of a visual search experiment with emotional face stimuli.
View Article and Find Full Text PDFNegative feedback after an action in a cognitive task can lead to devaluing that action on future trials as well as to more cautious responding when encountering that same choice again. These phenomena have been explored in the past by reinforcement learning theories and cognitive control accounts, respectively. Yet, how cognitive control interacts with value updating to give rise to adequate adaptations under uncertainty is less clear.
View Article and Find Full Text PDFThere is a general conception that positive associations to one's trait, e.g. 'I'm clever', are beneficial for cognitive performance.
View Article and Find Full Text PDFWe investigated if certain phases of performance monitoring show differential sensitivity to external feedback and thus rely on distinct mechanisms. The phases of interest were: the error phase (FE), the phase of the correct response after errors (FEC), and the phase of correct responses following corrects (FCC). We tested accuracy and reaction time (RT) on 12 conditions of a continuous-choice-response task; the 2-back task.
View Article and Find Full Text PDFFront Hum Neurosci
August 2013
The way we think about ourselves impacts greatly on our behavior. This paper describes a behavioral study and a computational model that shed new light on this important area. Participants were primed "clever" and "stupid" using a scrambled sentence task, and we measured the effect on response time and error-rate on a rule-association task.
View Article and Find Full Text PDFSoc Cogn Affect Neurosci
September 2011
Social cues have subtle effects on a person, often without them being aware. One explanation for this influence involves implicit priming of trait associations. To study this effect, we activated implicit associations in participants of 'being Clever' or 'being Stupid' that were task relevant, and studied its behavioural impact on an independent cognitive task (the n-back task).
View Article and Find Full Text PDFIt was suggested over 20 years ago that the supplementary motor cortex is involved in self-generated behaviour. Since then, there have been many studies using electrophysiology and brain imaging of the role of the supplementary motor cortex and anterior cingulate cortex. In light of the findings, the proposal that these regions are crucial for self-generated action has recently been challenged.
View Article and Find Full Text PDFWe have previously reported sustained activation in the ventral prefrontal cortex while participants prepared to perform 1 of 2 tasks as instructed. But there are studies that have reported activation reflecting task rules elsewhere in prefrontal cortex, and this is true in particular when it was left to the participants to decide which rule to obey. The aim of the present experiment was to use functional magnetic resonance imaging (fMRI) to find whether there was activation in common, irrespective of the way that the task rules were established.
View Article and Find Full Text PDFWe used functional magnetic resonance imaging (fMRI) to identify brain areas involved in auditory rhythm perception. Participants listened to three rhythm sequences that varied in temporal predictability. The most predictable sequence was an isochronous rhythm sequence of a single interval (ISO).
View Article and Find Full Text PDFHumans are unique in being able to reflect on their own performance. For example, we are more motivated to do well on a task when we are told that our abilities are being evaluated. We set out to study the effect of self-motivation on a working memory task.
View Article and Find Full Text PDFStudies on simple pseudorandom motor and cognitive tasks have shown that the dorsolateral prefrontal cortex and rostral premotor areas are involved in free response selection. We used functional magnetic resonance imaging to investigate whether these brain regions are also involved in free generation of responses in a more complex creative behavior: musical improvisation. Eleven professional pianists participated in the study.
View Article and Find Full Text PDFWe investigated whether the temporal structure of movement sequences can be represented and learned independently of their ordinal structure, and whether some brain regions are particularly important for temporal sequence performance. Using a learning transfer design, we found evidence for independent temporal representations: learning a spatiotemporal sequence facilitated learning its temporal and ordinal structure alone; learning a temporal and an ordinal structure facilitated learning of a sequence where the two were coupled. Second, learning of temporal structures was found during reproduction of sequential stimuli with random ordinal structure, suggesting independent mechanisms for temporal learning.
View Article and Find Full Text PDFWe investigated effector-independent aspects of voluntary motor timing, using behavioural measurements and functional magnetic resonance imaging. Two types of temporal pattern were investigated; one isochronous, the other a metric, rhythmic sequence of six temporal intervals. Each pattern was performed using tapping movements with the left or right index fingers, or rhythmic speech on one syllable.
View Article and Find Full Text PDFWhen performing or perceiving music, we experience the melodic (spatial) and rhythmic aspects as a unified whole. Moreover, the motor program theory stipulates that the relative timing and the serial order of the movement are invariant features of a motor program. Still, clinical and psychophysical observations suggest independent processing of these two aspects, in both production and perception.
View Article and Find Full Text PDFUsing diffusion tensor imaging, we investigated effects of piano practicing in childhood, adolescence and adulthood on white matter, and found positive correlations between practicing and fiber tract organization in different regions for each age period. For childhood, practicing correlations were extensive and included the pyramidal tract, which was more structured in pianists than in non-musicians. Long-term training within critical developmental periods may thus induce regionally specific plasticity in myelinating tracts.
View Article and Find Full Text PDFWe used functional magnetic resonance imaging to investigate if different brain regions are controlling the temporal and ordinal structure of movement sequences during performance. Human subjects performed overlearned spatiotemporal sequences of key-presses using the right index finger. Under different conditions, the temporal and the ordinal structure of the sequences were varied systematically in relation to each other, using a factorial design: COMBINED had a rhythm of eight temporal intervals and a serial order of eight keys; TEMPORAL had an eight-interval rhythm produced on one key; ORDINAL had an isochronous rhythm and an eight-key serial order; two control conditions had an isochronous pulse performed on one or two keys, respectively.
View Article and Find Full Text PDFJ Neurophysiol
December 2003
We investigated if the temporal and ordinal structures of sequences can be represented and learned independently. In Experiment 1, subjects learned three rhythmic sequences of key presses with the right index finger: Combined consisted of nine key presses with a corresponding temporal structure of eight intervals; Temporal had the temporal structure of Combined but was performed on one key; Ordinal had the ordinal structure of Combined but an isochronous rhythm. Subjects were divided into two groups.
View Article and Find Full Text PDF