Publications by authors named "Sara Kozma"

The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream of the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumors.

View Article and Find Full Text PDF

MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eμ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC.

View Article and Find Full Text PDF

Many oncogenes enhance nucleotide usage to increase ribosome content, DNA replication, and cell proliferation, but in parallel trigger p53 activation. Both the impaired ribosome biogenesis checkpoint (IRBC) and the DNA damage response (DDR) have been implicated in p53 activation following nucleotide depletion. However, it is difficult to reconcile the two checkpoints operating together, as the IRBC induces p21-mediated G1 arrest, whereas the DDR requires that cells enter S phase.

View Article and Find Full Text PDF

The role of MYC in regulating p53 stability as a function of increased ribosome biogenesis is controversial. On the one hand, it was suggested that MYC drives the overexpression of ribosomal proteins (RP)L5 and RPL11, which bind and inhibit HDM2, stabilizing p53. On the other, it has been proposed that increased ribosome biogenesis leads the consumption of RPL5/RPL11 into nascent ribosomes, reducing p53 levels and enhancing tumorigenesis.

View Article and Find Full Text PDF

Cells adapt to nutrient and energy deprivation by inducing autophagy, which is regulated by the mammalian target of rapamycin (mTOR) and AMP-activated protein kinases (AMPKs). We found that cell metabolism significantly influences the ability to induce autophagy, with mitochondrial complex I function being an important factor in the initiation, amplitude, and duration of the response. We show that phenformin or genetic defects in complex I suppressed autophagy induced by mTOR inhibitors, whereas autophagy was enhanced by strategies that increased mitochondrial metabolism.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mTOR for the treatment of HCC. However, such inhibitors induce hyperglycemia and increase mitochondrial efficiency.

View Article and Find Full Text PDF

Ribosomal protein (RP) expression in higher eukaryotes is regulated translationally through the 5′TOP sequence. This mechanism evolved to more rapidly produce RPs on demand in different tissues. Here we show that 40S ribosomes, in a complex with the mRNA binding protein LARP1, selectively stabilize 5′TOP mRNAs, with disruption of this complex leading to induction of the impaired ribosome biogenesis checkpoint (IRBC) and p53 stabilization.

View Article and Find Full Text PDF

Background: The combination of everolimus and the imidazoquinoline derivative, BEZ235 (dactolisib), a dual PI3K/mTOR inhibitor, demonstrated synergy in a preclinical model.

Objective: To establish clinical feasibility, a phase Ib dose-escalation trial investigating safety and pharmacokinetics of this combination in patients with advanced tumors was performed.

Patients And Methods: BEZ235 was orally administered daily in escalating doses of 200, 400, and 800 mg along with everolimus at 2.

View Article and Find Full Text PDF

Metabolic pathways that contribute to adiposity and ageing are activated by the mammalian target of rapamycin complex 1 (mTORC1) and p70 ribosomal protein S6 kinase 1 (S6K1) axis. However, known mTORC1-S6K1 targets do not account for observed loss-of-function phenotypes, suggesting that there are additional downstream effectors of this pathway. Here we identify glutamyl-prolyl-tRNA synthetase (EPRS) as an mTORC1-S6K1 target that contributes to adiposity and ageing.

View Article and Find Full Text PDF

S6K1 has been implicated in a number of key metabolic responses, which contribute to obesity. Critical among these is the control of a transcriptional program required for the commitment of mesenchymal stem cells to the adipocytic lineage. However, in contrast to its role in the cytosol, the functions and targets of nuclear S6K1 are unknown.

View Article and Find Full Text PDF

Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process.

View Article and Find Full Text PDF

Background: Neuroblastoma is a malignant embryonal tumor occurring in young children, consisting of undifferentiated neuroectodermal cells derived from the neural crest. Current therapies for high-risk neuroblastoma are insufficient, resulting in high mortality rates and high incidence of relapse. With the intent to find new therapies for neuroblastomas, we investigated the efficacy of low-doses of actinomycin D, which at low concentrations preferentially inhibit RNA polymerase I-dependent rRNA trasncription and therefore, ribosome biogenesis.

View Article and Find Full Text PDF

In addition to being a master regulator of cell cycle progression, E2F1 regulates other associated biological processes, including growth and malignancy. Here, we uncover a regulatory network linking E2F1 to lysosomal trafficking and mTORC1 signaling that involves v-ATPase regulation. By immunofluorescence and time-lapse microscopy we found that E2F1 induces the movement of lysosomes to the cell periphery, and that this process is essential for E2F1-induced mTORC1 activation and repression of autophagy.

View Article and Find Full Text PDF

Background: In the past, the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) has been shown to induce apoptosis in several human tumor types, including neuroblastomas. Amplification and over-expression of the MYCN oncogene is a diagnostic hallmark and a poor prognostic indicator in high-risk neuroblastomas. Here, we studied the relationship between MYCN amplification and over-expression and the anti-tumor effect of SAHA to assess whether this drug may serve as a treatment option for high-risk neuroblastomas.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a worldwide heath problem that is characterized by insulin resistance and the eventual loss of β cell function. As recent studies have shown that loss of ribosomal protein (RP) S6 kinase 1 (S6K1) increases systemic insulin sensitivity, S6K1 inhibitors are being pursued as potential agents for improving insulin resistance. Here we found that S6K1 deficiency in mice also leads to decreased β cell growth, intrauterine growth restriction (IUGR), and impaired placental development.

View Article and Find Full Text PDF

The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes.

View Article and Find Full Text PDF

The ability to translate genetic information into functional proteins is considered a landmark in evolution. Ribosomes have evolved to take on this responsibility and, although there are some differences in their molecular make-up, both prokaryotes and eukaryotes share a common structural architecture and similar underlying mechanisms of protein synthesis. Understanding ribosome function and biogenesis has been the focus of extensive research since the early days of their discovery.

View Article and Find Full Text PDF

mTOR integrates signals from nutrients and growth factors to control protein synthesis, cell growth, and survival. Although mTOR has been established as a therapeutic target in hematologic malignancies, its physiological role in regulating hematopoiesis remains unclear. Here we show that conditional gene targeting of mTOR causes bone marrow failure and defects in multi-lineage hematopoiesis including myelopoiesis, erythropoiesis, thrombopoiesis, and lymphopoiesis.

View Article and Find Full Text PDF

Mechanistic target of rapamycin (Mtor) is required for embryonic inner cell mass proliferation during early development. However, Mtor expression levels are very low in the mouse heart during embryogenesis. To determine if Mtor plays a role during mouse cardiac development, cardiomyocyte specific Mtor deletion was achieved using α myosin heavy chain (α-MHC) driven Cre recombinase.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) affects more than half a million people worldwide and is the third most common cause of cancer deaths. Because mammalian target of rapamycin (mTOR) signaling is up-regulated in 50% of HCCs, we compared the effects of the U.S.

View Article and Find Full Text PDF

Targeted deletion of S6 kinase (S6K) 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system.

View Article and Find Full Text PDF

We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize spurious interpretations of data. We recommend that division of energy expenditure data by either body weight or lean body weight and that presentation of group effects as histograms should be replaced by plotting individual data and analyzing both group and body-composition effects using analysis of covariance (ANCOVA).

View Article and Find Full Text PDF

The S6K1 and S6K2 kinases are considered important mTOR signaling effectors, yet their contribution to tumorigenesis remains unclear. Aberrant mTOR activation is a frequent event in cancer that commonly results from heterozygous loss of PTEN. Here, we show for the first time a differential protein expression between S6K1 and S6K2 in both mouse and human tissues.

View Article and Find Full Text PDF

Both the formation of long-term memory (LTM) and late-long-term potentiation (L-LTP), which is thought to represent the cellular model of learning and memory, require de novo protein synthesis. The mammalian target of Rapamycin (mTOR) complex I (mTORC1) integrates information from various synaptic inputs and its best characterized function is the regulation of translation. Although initial studies have shown that rapamycin reduces L-LTP and partially blocks LTM, recent genetic and pharmacological evidence indicating that mTORC1 promotes L-LTP and LTM is controversial.

View Article and Find Full Text PDF