Spinocerebellar ataxia type 7 is a progressive neurodegenerative disorder caused by a CAG DNA triplet repeat expansion leading to an expanded polyglutamine tract in the ataxin-7 protein. Ataxin-7 appears to be a transcription factor and a component of the STAGA transcription coactivator complex. Here, using live cell imaging and inverted fluorescence recovery after photobleaching, we demonstrate that ataxin-7 has the ability to export from the nucleus via the CRM-1/exportin pathway and that ataxin-7 contains a classic leucine-type nuclear export signal (NES).
View Article and Find Full Text PDFSpinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder caused by expansion of a polyglutamine tract in the ataxin-7 protein. A unique feature of SCA7 is degeneration of photoreceptor cells in the retina, resulting in cone-rod dystrophy. In an SCA7 transgenic mouse model that we developed, it was found that the cone-rod dystrophy involves altered photoreceptor gene expression due to interference with Crx, a homeodomain transcription factor containing a glutamine-rich region.
View Article and Find Full Text PDFSpinocerebellar ataxia (SCA) type 7 is an inherited neurodegenerative disorder caused by expansion of a polyglutamine tract within the ataxin-7 protein. To determine the molecular basis of polyglutamine neurotoxicity in this and other related disorders, we produced SCA7 transgenic mice that express ataxin-7 with 24 or 92 glutamines in all neurons of the CNS, except for Purkinje cells. Transgenic mice expressing ataxin-7 with 92 glutamines (92Q) developed a dramatic neurological phenotype presenting as a gait ataxia and culminating in premature death.
View Article and Find Full Text PDF