The symbiotic N-fixation process in the legume-rhizobia interaction is relevant for sustainable agriculture. The characterization of symbiotic mutants, mainly in model legumes, has been instrumental for the discovery of symbiotic genes, but similar studies in crop legumes are scant. To isolate and characterize common bean () symbiotic mutants, an ethyl methanesulphonate-induced mutant population from the BAT 93 genotype was analyzed.
View Article and Find Full Text PDFPlants MADS-domain/AGL proteins constitute a large transcription factor (TF) family that controls the development of almost every plant organ. We performed a phylogeny of (. 500) MADS-domain proteins from Arabidopsis and four legume species.
View Article and Find Full Text PDFPhosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated with Rhizobium tropici CIAT899 grown under P-deficient and P-sufficient conditions. P-deficient inoculated plants showed drastic reduction in nodulation and nitrogenase activity as determined by acetylene reduction assay.
View Article and Find Full Text PDFThe complete nucleotide sequence of the genome of Sinorhizobium meliloti, the symbiont of alfalfa, was reported in 2001 by an international consortium of laboratories. The genome comprises a chromosome of 3.65 megabases (Mb) and two megaplasmids, pSymA and pSymB, of 1.
View Article and Find Full Text PDF