Publications by authors named "Sara I Perez-Elvira"

The application of steam explosion between two stages of anaerobic digestion may improve energy recovery from sludge while increasing organic matter removal. The influence of the operating conditions of the thermal process: temperature (130-210 °C), retention time (5-45 min) and TS concentration (5.4-10.

View Article and Find Full Text PDF

The traceability of conventional pollutants and 10 organic microcontaminants in the sludge line of a wastewater treatment plant (WWTP) was evaluated. The application of thermal hydrolysis (TH) as pre-treatment to anaerobic digestion (AD) or as inter-treatment (between two AD stages) was considered and compared with the conventional digestion scheme. TH scenarios reduced the mass flow rate of biosolids (40-60%) as well as the ratio of solids (50-100%), organic matter (5-26%) and nitrogen (8-13%) destined to biosolids.

View Article and Find Full Text PDF

Residual coffee husks after seed processing may be better profited if bioconverted into energy through anaerobic digestion. This process may be improved by implementing a pretreatment step and by co-digesting the coffee husks with a more liquid biomass. In this context, this study aimed at evaluating the anaerobic co-digestion of coffee husks with microalgal biomass.

View Article and Find Full Text PDF

Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process.

View Article and Find Full Text PDF

Thermal pretreatment is an interesting technique not only for increasing sludge biodegradability, leading to higher methane productivity, but also for improving degradation rates, allowing full-scale plants to reduce the size of digesters. In this study, the Anaerobic Digestion Model No. 1 (ADM1) was used as a tool to assess the effects of thermal pretreatment and hydraulic retention time (HRT) on the performance of three pilot-scale digesters fed with mixed sludge with/without pretreatment applied to the waste activated sludge fraction.

View Article and Find Full Text PDF

The aim of this work was to study in depth the behavior and optimization of a novel process, called advanced thermal hydrolysis (ATH), to determine its utility as a pretreatment (sludge solubilization) or postreatment (organic matter removal) for anaerobic digestion (AD) in the sludge line of wastewater treatment plants (WWTPs). ATH is based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H(2)O(2)) addition and takes advantage of a peroxidation/direct steam injection synergistic effect. On the basis of the response surface methodology (RSM) and a modified Doehlert design, an empirical second-order polynomial model was developed for the total yield of: (a) disintegration degree [DD (%)] (solubilization), (b) filtration constant [F(c) (cm(2)/min)] (dewaterability), and (c) organic matter removal (%).

View Article and Find Full Text PDF

In this study, microwave treatment is analyzed as a way to accelerate the hydrolysis in anaerobic digestion of municipal wastewater sludge. The influence of the absorbed energy, power and athermal microwave effect on organic matter solubilization and biogas production has been studied. In addition, a novel method that considers the absorbed energy in the microwave system is proposed, in order to obtain comparable experimental results.

View Article and Find Full Text PDF