Recent studies show that newly sampled monkeypox virus (MPXV) genomes exhibit mutations consistent with Apolipoprotein B mRNA Editing Catalytic Polypeptide-like3 (APOBEC3)-mediated editing compared to MPXV genomes collected earlier. It is unclear whether these single-nucleotide polymorphisms (SNPs) result from APOBEC3-induced editing or are a consequence of genetic drift within one or more MPXV animal reservoirs. We develop a simple method based on a generalization of the General-Time-Reversible model to show that the observed SNPs are likely the result of APOBEC3-induced editing.
View Article and Find Full Text PDFRecent studies show that newly sampled monkeypox virus (MPXV) genomes exhibit mutations consistent with Apolipoprotein B mRNA Editing Catalytic Polypeptide-like3 (APOBEC3)-mediated editing, compared to MPXV genomes collected earlier. It is unclear whether these single nucleotide polymorphisms (SNPs) result from APOBEC3-induced editing or are a consequence of genetic drift within one or more MPXV animal reservoirs. We develop a simple method based on a generalization of the General-Time-Reversible (GTR) model to show that the observed SNPs are likely the result of APOBEC3-induced editing.
View Article and Find Full Text PDF