Biochem Soc Trans
December 2024
Reverse micelles (RMs) have emerged as useful tools for the study of membrane associated proteins. With a nanoscale water core surrounded by surfactant and solubilized in a non-polar solvent, RMs stand apart as a unique membrane model. While RMs have been utilized as tools to investigate the physical properties of membranes and their associated water, RMs also effectively house membrane associated proteins for a variety of studies.
View Article and Find Full Text PDFPeripheral membrane proteins (PMPs) are a subgroup of membrane-associated proteins that are water-soluble and bind to membranes, often reversibly, to perform their function. These proteins have been extensively studied in the aqueous state, but there is often a lack of high-resolution structural and functional studies of these proteins in the membrane-bound state. Currently, nuclear magnetic resonance (NMR) is among the best-equipped methods to study these relatively small proteins and domains, but current models have some disadvantages that prevent a full understanding of PMP interactions with membranes and lipids.
View Article and Find Full Text PDFAdvancing the study of membrane associated proteins and their interactions is dependent on accurate membrane models. While a variety of membrane models for high-resolution membrane protein study exist, most do not reflect the diversity of lipids found within biological membranes. In this work, we have developed native reverse micelles (nRMs) formulated with lipids from multiple eukaryotic sources, which encapsulate proteins and enable them to interact as they would with a biological membrane.
View Article and Find Full Text PDF