Publications by authors named "Sara Grimm"

Objectives: Deficiency in the transcription factor (TF) GLI-Similar 3 (GLIS3) in humans and mice leads to the development of polycystic kidney disease (PKD). In this study, we investigate the role of GLIS3 in the regulation of energy metabolism and mitochondrial functions in relation to its role in normal kidney and metabolic reprogramming in PKD pathogenesis.

Methods: Transcriptomics, cistromics, and metabolomics were used to obtain insights into the role of GLIS3 in the regulation of energy homeostasis and mitochondrial metabolism in normal kidney and PKD pathogenesis using GLIS3-deficient mice.

View Article and Find Full Text PDF

Testicular fetal Leydig cells are a specialized cell type responsible for embryo masculinization. Fetal Leydig cells produce androgens, that induce the differentiation of male reproductive system and sexual characteristics. Deficiencies in Leydig cell differentiation leads to various disorders of sex development and male reproductive defects such as ambiguous genitalia, hypospadias, cryptorchidism, and infertility.

View Article and Find Full Text PDF

The severity of allergic asthma is driven by the balance between allergen-specific T regulatory (Treg) and T helper (Th)2 cells. However, it is unclear whether specific subsets of conventional dendritic cells (cDCs) promote the differentiation of these two T cell lineaeges. We have identified a subset of lung resident type 2 cDCs (cDC2s) that display high levels of CD301b and have potent Treg-inducing activity .

View Article and Find Full Text PDF

Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed.

View Article and Find Full Text PDF

Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer.

View Article and Find Full Text PDF

Background: Allergic asthma is driven largely by allergen-specific T2 cells, which develop in regional lymph nodes on the interaction of naive CD4 T cells with allergen-bearing dendritic cells that migrate from the lung. This migration event is dependent on CCR7 and its chemokine ligand, CCL21. However, is has been unclear whether the other CCR7 ligand, CCL19, has a role in allergic airway disease.

View Article and Find Full Text PDF

The ability to detect several types of cancer using a non-invasive, blood-based test holds the potential to revolutionize oncology screening. We mined tumor methylation array data from the Cancer Genome Atlas (TCGA) covering 14 cancer types and identified two novel, broadly-occurring methylation markers at and . To evaluate their performance as a generalized blood-based screening approach, along with our previously reported methylation biomarker, , we rigorously assessed each marker individually or combined.

View Article and Find Full Text PDF

DNASE1L3, an enzyme highly expressed in DCs, is functionally important for regulating autoimmune responses to self-DNA and chromatin. Deficiency of DNASE1L3 leads to development of autoimmune diseases in both humans and mice. However, despite the well-established causal relationship between DNASE1L3 and immunity, little is known about the involvement of DNASE1L3 in regulation of antitumor immunity, the foundation of modern antitumor immunotherapy.

View Article and Find Full Text PDF

Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time when GLIS3 target genes, such as become also expressed.

View Article and Find Full Text PDF

To facilitate wide-scale implementation of Illumina Mouse Methylation BeadChip (MMB) technology, array-based measurement of cytosine methylation was compared with the gold-standard assessment of DNA methylation by whole-genome bisulfite sequencing (WGBS). DNA methylation across two mouse strains (C57B6 and C3H) and both sexes was assessed using the MMB and compared with previously existing deep-coverage WGBS of mice of the same strain and sex. The findings demonstrated that 93.

View Article and Find Full Text PDF

Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer.

View Article and Find Full Text PDF

Background: Loss of the transcription factor GLI-Similar 3 (GLIS3) function causes congenital hypothyroidism (CH) in both humans and mice due to decreased expression of several thyroid hormone (TH) biosynthetic genes in thyroid follicular cells. Whether and to what extent, GLIS3 regulates thyroid gene transcription in coordination with other thyroid transcriptional factors (TFs), such as PAX8, NKX2.1 and FOXE1, is poorly understood.

View Article and Find Full Text PDF

The female reproductive tract develops from its embryonic precursor, the Müllerian duct. In close proximity to the Müllerian duct lies the precursor for the male reproductive tract, the Wolffian duct, which is eliminated in the female embryo during sexual differentiation. We discovered that a component of the Wolffian duct, its mesenchyme, is not eliminated after sexual differentiation.

View Article and Find Full Text PDF

It remains a challenge to decipher the complex relationship between DNA methylation, histone modification, and the underlying DNA sequence with limited input material. Here, we developed an efficient, low-input, and low-cost method for the simultaneous profiling of genomic localization of histone modification and methylation status of the underlying DNA at single-base resolution from the same cells in a single experiment by integrating cleavage under targets and tagmentation (CUT&Tag) with tagmentation-based bisulfite sequencing (CUT&Tag-BS). We demonstrated the validity of our method using representative histone modifications of euchromatin and constitutive and facultative heterochromatin (H3K4me1, H3K9me3, and H3K27me3, respectively).

View Article and Find Full Text PDF

We present a simple, fast, and robust protocol (low-input ATAC&mRNA-seq) to simultaneously generate ATAC-seq and mRNA-seq libraries from the same cells in limited cell numbers by coupling a simplified ATAC procedure using whole cells with a novel mRNA-seq approach that features a seamless on-bead process including direct mRNA isolation from the cell lysate, solid-phase cDNA synthesis, and direct tagmentation of mRNA/cDNA hybrids for library preparation. It enables dual-omics profiling from limited material when joint epigenome and transcriptome analyses are needed. For complete details on the use and execution of this protocol, please refer to Li et al.

View Article and Find Full Text PDF

Deciphering epigenetic regulation of gene expression requires measuring the epigenome and transcriptome jointly. Single-cell multi-omics technologies have been developed for concurrent profiling of chromatin accessibility and gene expression. However, multi-omics profiling of low-input bulk samples remains challenging.

View Article and Find Full Text PDF

Dendritic cells (DC) in the lung that induce Th17 differentiation remain incompletely understood, in part because conventional CD11b DCs (cDC2) are heterogeneous. Here, we report a population of cDCs that rapidly accumulates in lungs of mice following house dust extract inhalation. These cells are Ly-6C, are developmentally and phenotypically similar to cDC2, and strongly promote Th17 differentiation ex vivo.

View Article and Find Full Text PDF

Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP.

View Article and Find Full Text PDF

DNA methylation and trimethylated histone H4 Lysine 20 (H4K20me3) constitute two important heterochromatin-enriched marks that frequently cooperate in silencing repetitive elements of the mammalian genome. However, it remains elusive how these two chromatin modifications crosstalk. Here, we report that DNA methyltransferase 1 (DNMT1) specifically 'recognizes' H4K20me3 via its first bromo-adjacent-homology domain (DNMT1).

View Article and Find Full Text PDF

Airway eosinophilia is a hallmark of allergic asthma and is associated with mucus production, airway hyperresponsiveness, and shortness of breath. Although glucocorticoids are widely used to treat asthma, their prolonged use is associated with several side effects. Furthermore, many individuals with eosinophilic asthma are resistant to glucocorticoid treatment, and they have an unmet need for novel therapies.

View Article and Find Full Text PDF

Sexually dimorphic establishment of the reproductive tract system requires sex-specific regression of the Wolffian duct and Müllerian duct in the mesonephros. In an XX embryo, the Wolffian duct regresses under the control of the mesenchymal transcription factor COUP-TFII. To understand cellular and molecular actions underlying Wolffian duct regression, we performed transcriptomic analyses of XX mesonephroi with or without Coup-tfII and genome-wide analysis of COUP-TFII chromatin occupancy in XX mesonephroi.

View Article and Find Full Text PDF

Estrogen receptor alpha (ERα) is a ligand-dependent transcription regulator, containing two transactivation functional domains, AF-1 and AF-2. The selective estrogen receptor modulators (SERMs), including 4-hydroxytamoxifen (4OHT), activate AF-1 preferentially rather than AF-2. However, it is unclear whether this specific function is related to the tissue-selective functionality of SERMs.

View Article and Find Full Text PDF

Mitochondrial-driven alterations of the epigenome have been reported, but whether they are relevant at the organismal level remains unknown. The viable yellow agouti mouse (A) is a powerful epigenetic biosensor model that reports on the DNA methylation status of the A locus, which is established prior to the three-germ-layer separation, through the coat color of the animals. Here we show that maternal exposure to rotenone, a potent mitochondrial complex I inhibitor, not only changes the DNA methylation status of the A locus in the skin but broadly affects the liver DNA methylome of the offspring.

View Article and Find Full Text PDF

During cellular reprogramming, the pioneer transcription factor GATA3 binds chromatin, and in a context-dependent manner directs local chromatin remodeling and enhancer formation. Here, we use high-resolution nucleosome mapping in human cells to explore the impact of the position of GATA motifs on the surface of nucleosomes on productive enhancer formation, finding productivity correlates with binding sites located near the nucleosomal dyad axis. Biochemical experiments with model nucleosomes demonstrate sufficiently stable transcription factor-nucleosome interaction to empower cryo-electron microscopy structure determination of the complex at 3.

View Article and Find Full Text PDF