Publications by authors named "Sara Galastri"

Background & Aims: Myostatin is mainly expressed in skeletal muscle, where it negatively regulates trophism. This myokine is implicated in the pathophysiology of nonalcoholic steatohepatitis, an emerging cause of liver fibrosis. In this study we explored the effects of myostatin on the biology of hepatic stellate cells.

View Article and Find Full Text PDF

Several actin-binding proteins have been shown to be altered in metastatic cell lines and tumours and, in particular, Myristoylated Alanine-Rich protein Kinase C substrate (MARCKS) has been implicated in the pathogenesis of various highly metastatic epithelial malignancies. Considering that a large percentage of deaths due to colorectal cancer (CRC) are consequent to hepatic metastasization, aim of this study was to elucidate the involvement and mechanism of MARCKS in CRC by employing in vitro and in vivo approaches. Loss-of and-gain-on function approaches of MARCKS were employed in two human CRC cell lines: Clone A cells expressing MARCKS and LoVo cells known to have a frameshift mutation of MARCKS i.

View Article and Find Full Text PDF

Backgrounds & Aims: Cholangiocarcinoma (CCA) is highly fatal because of early invasion, widespread metastasis, and lack of an effective therapy. Migration, invasion, and metastasis of CCA cells are modulated by signals received from stromal cells. The SDF-1-CXCR4 axis emerges as a pivotal regulator of migration and survival of different tumor cells.

View Article and Find Full Text PDF

Expression of CCL2 (CC chemokine ligand 2) (or monocyte chemoattractant protein-1) regulates inflammatory cell infiltration in the liver and adipose tissue, favouring steatosis. However, its role in the pathogenesis of steatohepatitis is still uncertain. In the present study, we investigated the development of non-alcoholic steatohepatitis induced by an MCD diet (methionine/choline-deficient diet) in mice lacking the CCL2 gene on two different genetic backgrounds, namely Balb/C and C57/Bl6J.

View Article and Find Full Text PDF

Hepatic fibrosis is an integrated process triggered by chronic liver damage, leading to the accumulation of extracellular matrix. In patients with chronic liver disease, this process is favored by the presence of obesity or overweight, which are also relevant risk factors for the progression of nonalcoholic steatohepatitis. In this paper, we review the available evidence indicating the modulation of the fibrogenic process by adipokines, a group of cytokines secreted primarily by adipose tissue.

View Article and Find Full Text PDF

Background: Low-grade inflammation facilitates the development of essential hypertension and target organ damage (TOD). Recently, human T-lymphocytes were shown to be endowed with a functional active renin-angiotensin system (RAS). We investigated whether in hypertensive patients a selective angiotensin (Ang) II-driven upregulation of T-cell RAS occurs and whether it is differently modulated in presence of low-grade inflammation.

View Article and Find Full Text PDF

Leptin modulates the angiogenic properties of hepatic stellate cells (HSC), but the molecular mechanisms involved are poorly understood. We investigated the pathways regulating hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in leptin-stimulated myofibroblastic HSC. Exposure to leptin enhanced the phosphorylation of TSC2 on T1462 residues and of p70 S6 kinase and the translational inhibitor 4E-binding protein-1, indicating the ability of leptin to activate the mammalian target of rapamycin (mTOR) pathway.

View Article and Find Full Text PDF

Nonalcoholic steatohepatitis is characterized by the association of steatosis with hepatic cell injury, lobular inflammation and fibrosis. Curcumin is known for its antioxidant, anti-inflammatory and antifibrotic properties. The aim of this study was to test whether the administration of curcumin limits fibrogenic evolution in a murine model of nonalcoholic steatohepatitis.

View Article and Find Full Text PDF

Objective: In patients with hepatitis C virus (HCV)/HIV co-infection, a faster progression of liver fibrosis to cirrhosis has been reported. In this study, an investigation was carried out to determine whether gp120, an HIV envelope protein, modulates the biology of human hepatic stellate cells (HSCs), key cell types in the pathogenesis of fibrosis.

Methods: Myofibroblastic HSCs were isolated from normal human liver tissue.

View Article and Find Full Text PDF

Fibrosis is a multicellular wound healing process, where myofibroblasts that express extracellular matrix components extensively cross-talk with other cells resident in the liver or recruited from the bloodstream. Macrophages and infiltrating monocytes participate in the development of fibrosis via several mechanisms, including secretion of cytokines and generation of oxidative stress-related products. However, macrophages are also pivotal in the process of fibrosis resolution, where they contribute to matrix degradation.

View Article and Find Full Text PDF

This study was aimed at investigating the effects of Angiotensin (Ang) II stimulation on T lymphocytes mRNA expression of angiotensinogen (AGTN), angiotensin-converting enzyme (ACE) and AT1-receptor (R) and on ACE activity and Ang II content. The effects of Ang II stimulus were studied in lipopolysaccharide (LPS)-stimulated or not stimulated lymphocytes. mRNA expression for interferon-gamma (INF-gamma) was also studied to investigate whether a link between lymphocyte RAS and immunological function might occur.

View Article and Find Full Text PDF

Unlabelled: Adiponectin limits the development of liver fibrosis and activates adenosine monophosphate-activated protein kinase (AMPK). AMPK is a sensor of the cellular energy status, but its possible modulation of the fibrogenic properties of hepatic stellate cells (HSCs) has not been established. In this study, we investigated the role of AMPK activation in the biology of activated human HSCs.

View Article and Find Full Text PDF

Background/aims: Administration of carbon tetrachloride determines liver injury, inflammation and oxidative stress, but the molecular mechanisms of damage are only partially understood. In this study, we investigated the development of acute toxic damage in mice lacking monocyte chemoattractant protein-1 (MCP-1), a chemokine which recruits monocytes and activated lymphocytes.

Methods: Mice with targeted deletion of the MCP-1 gene and wild type controls were administered a single intragastric dose of carbon tetrachloride.

View Article and Find Full Text PDF