Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2(R308/Y), Cntnap2-/-, L7-Tsc1 (L7/Pcp2(Cre)::Tsc1(flox/+)), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2-/-, patDp(15q11-13)/+, and L7/Pcp2(Cre)::Tsc1(flox/+), which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC.
View Article and Find Full Text PDFBackground: Sodium nitroprusside (SNP) is a potent vasodilator that has been used to induce deliberate hypotension in children during surgery involving significant blood loss, including craniofacial and spinal fusion procedures. SNP metabolism liberates cyanide, which may cause interference with cellular energy metabolism, leading to metabolic acidosis and central nervous system injury. We performed a retrospective, case-control study to determine whether the short-term intra-operative use of SNP for deliberate hypotension is associated with metabolic acidosis in children undergoing surgical procedures for craniofacial or spinal anomalies.
View Article and Find Full Text PDF