To accurately phenocopy human biology , researchers have been reducing their dependence on standard, static two-dimensional (2D) cultures and instead are moving towards three-dimensional (3D) and/or multicellular culture techniques. While these culture innovations are becoming more commonplace, there is a growing body of research that illustrates the benefits and even necessity of recapitulating the dynamic flow of nutrients, gas, waste exchange and tissue interactions that occur . However, cost and engineering complexity are two main factors that hinder the adoption of these technologies and incorporation into standard laboratory workflows.
View Article and Find Full Text PDFMitochondria are biosynthetic, bioenergetic, and signaling organelles with a critical role in cellular physiology. Dysfunctional mitochondria are associated with aging and underlie the cause of a wide range of diseases, from neurodegeneration to cancer. Through signaling, mitochondria regulate diverse biological outcomes.
View Article and Find Full Text PDFPrion-like protein aggregation underlies the pathology of a group of fatal neurodegenerative diseases in humans, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and transmissible spongiform encephalopathy. At present, few high-throughput screening (HTS) systems are available for anti-prion small-molecule identification. Here we describe an innovative phenotypic HTS system in yeast that allows for efficient identification of chemical compounds that eliminate the yeast prion [SWI].
View Article and Find Full Text PDFThe L-type calcium channel (LTCC) CaV1.3 is regarded as a new potential therapeutic target for Parkinson's disease. Calcium influx through CaV1.
View Article and Find Full Text PDFCaV1.3 L-type calcium channels (LTCCs) have been a potential target for Parkinson's disease since calcium ion influx through the channel was implicated in the generation of mitochondrial oxidative stress, causing cell death in the dopaminergic neurons. Selective inhibition of CaV1.
View Article and Find Full Text PDFL-type Ca(2+) channels in mammalian brain neurons have either a Ca(V)1.2 or Ca(V)1.3 pore-forming subunit.
View Article and Find Full Text PDF