Nanoparticles interact with immune cells in many different ways. These interactions are crucially important for determining nanoparticles' ability to be used for cancer therapy. Traditionally, strategies such as PEGylation have been employed to reduce (the kinetics of) nanoparticle uptake by immune cells, to endow them with long circulation properties, and to enable them to exploit the Enhanced Permeability and Retention (EPR) effect to accumulate in tumors.
View Article and Find Full Text PDFMetabolic reprogramming 'Warburg effect' and immune checkpoint signaling are immunosuppressive hallmarks of triple-negative breast cancer (TNBC) contributing to the limited clinical applicability of immunotherapy. Biomaterials arise as novel tools for immunomodulation of the tumor microenvironment that can be used alongside conventional immunotherapeutics. Chitosan and lecithin are examples of versatile biomaterials with interesting immunomodulatory properties.
View Article and Find Full Text PDFNanomedicine is revolutionizing the treatment of cancer and has achieved unprecedented outcomes over the past decades. The accumulation of Nanoparticles (NPs) in different tumors relies mainly on the Enhanced Permeability and Retention (EPR) effect benefiting from the wide fenestrae of the tumor vasculature and the lack of lymphatic drainage. However, the EPR effect is recognized as a heterogeneous phenomenon resulting in heterogeneous outcomes of clinical trials.
View Article and Find Full Text PDFA variety of hepatic insults result in the accumulation of collagen-rich new extracellular matrix in the liver, ultimately culminating in liver fibrosis and cirrhosis. For such reasons, approaches looking into digestion of the collagen-rich extracellular matrix present an interesting therapeutic approach for cases of chronic liver disease, where the fibrotic scar is well established. Portal collagenase administration has recently led to the successful reversion of cirrhosis in an experimental rabbit model.
View Article and Find Full Text PDF