HDGF-related protein 2 (HRP-2) is a member of the Hepatoma-Derived Growth Factor-related protein family that harbors the structured PWWP and Integrase Binding Domain, known to associate with methylated histone tails or cellular and viral proteins, respectively. Interestingly, HRP-2 is a paralog of Lens Epithelium Derived Growth Factor p75 (LEDGF/p75), which is essential for -rearranged (-r) leukemia but dispensable for hematopoiesis. Sequel to these findings, we investigated the role of HRP-2 in hematopoiesis and -r leukemia.
View Article and Find Full Text PDFMixed lineage leukemia (MLL) represents a genetically distinct and aggressive subset of human acute leukemia carrying chromosomal translocations of the gene. These translocations result in oncogenic fusions that mediate aberrant recruitment of the transcription machinery to MLL target genes. The N-terminus of MLL and MLL-fusions form a complex with lens epithelium-derived growth factor (LEDGF/p75; encoded by the gene) and MENIN.
View Article and Find Full Text PDFRetroviral vectors have shown their curative potential in clinical trials correcting monogenetic disorders. However, therapeutic benefits were compromised due to vector-induced dysregulation of cellular genes and leukemia development in a subset of patients. Bromodomain and extraterminal domain (BET) proteins act as cellular cofactors that tether the murine leukemia virus (MLV) pre-integration complex to host chromatin via interaction with the MLV integrase (IN) and thereby define the typical gammaretroviral integration distribution.
View Article and Find Full Text PDFMixed lineage leukemia (MLL) fusion-driven acute leukemias represent a genetically distinct subset of leukemias with poor prognosis. MLL forms a ternary complex with the lens epithelium-derived growth factor (LEDGF/p75) and MENIN. LEDGF/p75, a chromatin reader recognizing H3K36me3 marks, contributes to the association of the MLL multiprotein complex to chromatin.
View Article and Find Full Text PDFStable integration in the host genome renders murine leukemia virus (MLV)-derived vectors attractive tools for gene therapy. Adverse events in otherwise successful clinical trials caused by proto-oncogene activation due to vector integration hamper their application. MLV and MLV-based vectors integrate near strong enhancers, active promoters, and transcription start sites (TSS) through specific interaction of MLV integrase (IN) with the bromodomain and extra-terminal (BET) family of proteins, accounting for insertional mutagenesis.
View Article and Find Full Text PDFA hallmark of retroviral replication is integration of the viral genome into host cell DNA. This characteristic makes retrovirus-based vectors attractive delivery vehicles for gene therapy. However, adverse events in gene therapeutic trials, caused by activation of proto-oncogenes due to murine leukemia virus (MLV)-derived vector integration, hamper their application.
View Article and Find Full Text PDF