The 2016 Zika virus (ZIKV) epidemic catalyzed a global effort to develop diagnostic tests, vaccines, and therapeutic treatments. However, the rapid waning epidemiology of ZIKV stalled many countermeasure development efforts. On January 31 and February 1, 2023, the National Institute of Allergy and Infectious Diseases (NIAID) hosted “Continuing Development of Vaccines and Monoclonal Antibodies Against Zika Virus,” a workshop of assembled experts from multiple fields and sectors to review the latest ZIKV research findings and develop recommendations for advancing vaccines and monoclonal antibodies.
View Article and Find Full Text PDFYellow fever virus (YFV) infection poses a great risk to un-vaccinated individuals living or traveling in the endemic regions of Africa and South America. It is estimated that approximately 30,000 people die each year of this disease. The liver is the main target of YFV, where as many as 80% of the hepatocytes may become involved in the infection.
View Article and Find Full Text PDFYellow fever virus (YFV) causes serious disease in endemic areas of South America and Africa, even though a very well tolerated vaccine is available. YFV primarily targets the liver where as many as 80 % of hepatocytes may be involved during infection. The objective of this project was to compare and contrast the cytokine response from hepatocytes infected with either wild-type (Asibi) or vaccine (17-D-204) strains of YFV, with the goal of identifying responses that might be correlated with disease severity or vaccine efficacy.
View Article and Find Full Text PDFWild-type yellow fever virus (YFV) infections result in a hepatotropic disease which is often fatal, while vaccination with the live-attenuated 17-D strain results in productive infection yet is well-tolerated with few adverse events. Kupffer cells (KCs) are resident liver macrophages that have a significant role in pathogen detection, clearance and immune signaling. Although KCs appear to be an important component of YF disease, their role has been under-studied.
View Article and Find Full Text PDFISG20 is an interferon-inducible 3'-5' exonuclease that inhibits replication of several human and animal RNA viruses. However, the specificities of ISG20's antiviral action remain poorly defined. Here we determine the impact of ectopic expression of ISG20 on replication of several positive-strand RNA viruses from distinct viral families.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2010
We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including Influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1. In sharp contrast, the compound had no effect on the infection of nonenveloped viruses. In vitro and in vivo assays showed no overt toxicity.
View Article and Find Full Text PDFSubstitutions were engineered individually and in combinations at the fusion loop, receptor-binding domain and a stem-helix structure of the envelope protein of a West Nile virus strain, NY99, and their effects on mouse virulence and presentation of epitopes recognized by monoclonal antibodies (MAbs) were assessed. A single substitution within the fusion loop (L107F) attenuated mouse neuroinvasiveness of NY99. No substitutions attenuated NY99 neurovirulence.
View Article and Find Full Text PDF