Developmental and functional defects in the lymphatic system are responsible for primary lymphoedema (PL). PL is a chronic debilitating disease caused by increased accumulation of interstitial fluid, predisposing to inflammation, infections and fibrosis. There is no cure, only symptomatic treatment is available.
View Article and Find Full Text PDFLipoedema is a chronic adipose tissue disorder mainly affecting women, causing excess subcutaneous fat deposition on the lower limbs with pain and tenderness. There is often a family history of lipoedema, suggesting a genetic origin, but the contribution of genetics is currently unclear. A tightly phenotyped cohort of 200 lipoedema patients was recruited from two UK specialist clinics.
View Article and Find Full Text PDFBackground: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9.
Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants.
To gain insight into multiple myeloma (MM) tumorigenesis, we analyzed the mutational signatures in 874 whole-exome and 850 whole-genome data from the CoMMpass Study. We identified that coding and non-coding regions are differentially dominated by distinct single-nucleotide variant (SNV) mutational signatures, as well as five de novo structural rearrangement signatures. Mutational signatures reflective of different principle mutational processes-aging, defective DNA repair, and apolipoprotein B editing complex (APOBEC)/activation-induced deaminase activity-characterize MM.
View Article and Find Full Text PDFThe identification of driver mutations is fundamental to understanding oncogenesis. Although genes frequently mutated in B-cell lymphoma have been identified, the search for driver mutations has largely focused on the coding genome. Here we report an analysis of the noncoding genome using whole-genome sequencing data from 117 patients with B-cell lymphoma.
View Article and Find Full Text PDFEfforts are being directed to systematically analyze the non-coding regions of the genome for cancer-driving mutations. cis-regulatory elements (CREs) represent a highly enriched subset of the non-coding regions of the genome in which to search for such mutations. Here we use high-throughput chromosome conformation capture techniques (Hi-C) for 19,023 promoter fragments to catalog the regulatory landscape of colorectal cancer in cell lines, mapping CREs and integrating these with whole-genome sequence and expression data from The Cancer Genome Atlas.
View Article and Find Full Text PDFBackground: Meningiomas are adult brain tumors originating in the meningeal coverings of the brain and spinal cord, with significant heritable basis. Genome-wide association studies (GWAS) have previously identified only a single risk locus for meningioma, at 10p12.31.
View Article and Find Full Text PDFMultiple myeloma (MM) is a biologically heterogeneous malignancy, however, the mechanisms underlying this complexity are incompletely understood. We report an analysis of the whole-genome sequencing of 765 MM patients from CoMMpass. By employing promoter capture Hi-C in naïve B-cells, we identify cis-regulatory elements (CREs) that represent a highly enriched subset of the non-coding genome in which to search for driver mutations.
View Article and Find Full Text PDFMultiple myeloma (MM) is a malignancy of plasma cells. Genome-wide association studies have shown that variation at 5q15 influences MM risk. Here, we have sought to decipher the causal variant at 5q15 and the mechanism by which it influences tumorigenesis.
View Article and Find Full Text PDFThe genetic basis underlying the inherited risk of developing multiple myeloma (MM) is largely unknown. To examine the impact of rare protein altering variants on the risk of developing MM we analyzed high-coverage exome sequencing data on 513 MM cases and 1,569 healthy controls, performing both single variant and gene burden tests. We did not identify any recurrent coding low-frequency alleles (1-5%) with moderate effect that were statistically associated with MM.
View Article and Find Full Text PDFThe advent of high-throughput sequencing has accelerated our ability to discover genes predisposing to disease and is transforming clinical genomic sequencing. In both contexts knowledge of the spectrum and frequency of genetic variation in the general population and in disease cohorts is vital to the interpretation of sequencing data. While population level data is becoming increasingly available from publicly accessible sources, as exemplified by The Exome Aggregation Consortium (ExAC), the availability of large-scale disease-specific frequency information is limited.
View Article and Find Full Text PDFHigh-throughput sequencing analysis has accelerated searches for genes associated with risk for colorectal cancer (CRC); germline mutations in NTHL1, RPS20, FANCM, FAN1, TP53, BUB1, BUB3, LRP6, and PTPN12 have been recently proposed to increase CRC risk. We attempted to validate the association between variants in these genes and development of CRC in a systematic review of 11 publications, using sequence data from 863 familial CRC cases and 1604 individuals without CRC (controls). All cases were diagnosed at an age of 55 years or younger and did not carry mutations in an established CRC predisposition gene.
View Article and Find Full Text PDFAlthough family history is a major risk factor for colorectal cancer (CRC) a genetic diagnosis cannot be obtained in over 50 % of familial cases when screened for known CRC cancer susceptibility genes. The genetics of undefined-familial CRC is complex and recent studies have implied additional clinically actionable mutations for CRC in susceptibility genes for other cancers. To clarify the contribution of non-CRC susceptibility genes to undefined-familial CRC we conducted a mutational screen of 114 cancer susceptibility genes in 847 patients with early-onset undefined-familial CRC and 1609 controls by analysing high-coverage exome sequencing data.
View Article and Find Full Text PDFColorectal cancer (CRC) displays a complex pattern of inheritance. It is postulated that much of the missing heritability of CRC is enshrined in high-impact rare alleles, which are mechanistically and clinically important. In this study, we assay the impact of rare germline mutations on CRC, analysing high-coverage exome sequencing data on 1,006 early-onset familial CRC cases and 1,609 healthy controls, with additional sequencing and array data on up to 5,552 cases and 6,792 controls.
View Article and Find Full Text PDFWhilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.
View Article and Find Full Text PDFAnaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally incurable, with heterogeneous prognosis and few treatment targets identified. Most oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we analysed 51 AO by whole-exome sequencing, identifying previously reported frequent somatic mutations in CIC and FUBP1.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) of colorectal cancer (CRC) have identified 23 susceptibility loci thus far. Analyses of previously conducted GWAS indicate additional risk loci are yet to be discovered. To identify novel CRC susceptibility loci, we conducted a new GWAS and performed a meta-analysis with five published GWAS (totalling 7,577 cases and 9,979 controls of European ancestry), imputing genotypes utilising the 1000 Genomes Project.
View Article and Find Full Text PDFBackground: Prioritizing individual rare variants within associated genes or regions often consists of an ad hoc combination of statistical and biological considerations. From the statistical perspective, rare variants are often ranked using Fisher's exact p values, which can lead to different rankings of the same set of variants depending on whether 1- or 2-sided p values are used.
Results: We propose a likelihood ratio-based measure, maxLRc, for the statistical component of ranking rare variants under a case-control study design that avoids the hypothesis-testing paradigm.
Purpose: Knowledge of the contribution of high-penetrance susceptibility to familial colorectal cancer (CRC) is relevant to the counseling, treatment, and surveillance of CRC patients and families.
Patients And Methods: To quantify the impact of germline mutation to familial CRC, we sequenced the mismatch repair genes (MMR) APC, MUTYH, and SMAD4/BMPR1A in 626 early-onset familial CRC cases ascertained through a population-based United Kingdom national registry. In addition, we evaluated the contribution of mutations in the exonuclease domain (exodom) of POLE and POLD1 genes that have recently been reported to confer CRC risk.
To identify common variants influencing colorectal cancer (CRC) risk, we performed a meta-analysis of five genome-wide association studies, comprising 5626 cases and 7817 controls of European descent. We conducted replication of top ranked single nucleotide polymorphisms (SNPs) in additional series totalling 14 037 cases and 15 937 controls, identifying a new CRC risk locus at 10q24.2 [rs1035209; odds ratio (OR) = 1.
View Article and Find Full Text PDFMotivation: Sufficiently powered case-control studies with next-generation sequence (NGS) data remain prohibitively expensive for many investigators. If feasible, a more efficient strategy would be to include publicly available sequenced controls. However, these studies can be confounded by differences in sequencing platform; alignment, single nucleotide polymorphism and variant calling algorithms; read depth; and selection thresholds.
View Article and Find Full Text PDFTo identify variants for multiple myeloma risk, we conducted a genome-wide association study with validation in additional series totaling 4,692 individuals with multiple myeloma (cases) and 10,990 controls. We identified four risk loci at 3q26.2 (rs10936599, P = 8.
View Article and Find Full Text PDF