Publications by authors named "Sara D Siegel"

Advances in genetic engineering, synthetic biology, and DNA sequencing have transformed the re-emergent therapeutic bacteriophage field. The increasing rate of multidrug resistant (MDR) infections and the speed at which new bacteriophages can be isolated, sequenced, characterized, and engineered has reinvigorated phage therapy and unlocked new applications of phages for modulating bacteria. The methods used to genetically engineer bacteriophages are undergoing significant development, but identification of heterologous gene payloads with desirable activity and determination of their impact on bacteria or human cells in translationally relevant applications remain underexplored areas.

View Article and Find Full Text PDF

It has been proposed that bacterial membrane proteins may be synthesized and inserted into the membrane by a process known as transertion, which involves membrane association of their encoding genes, followed by coupled transcription, translation and membrane insertion. Here, we provide evidence supporting that the pathogen Vibrio parahaemolyticus uses transertion to assemble its type III secretion system (T3SS2), to inject virulence factors into host cells. We propose a two-step transertion process where the membrane-bound co-component receptor (VtrA/VtrC) is first activated by bile acids, leading to membrane association and expression of its target gene, vtrB, located in the T3SS2 pathogenicity island.

View Article and Find Full Text PDF

Most Actinobacteria encode a small transmembrane protein, whose gene lies immediately downstream of the housekeeping sortase coding for a transpeptidase that anchors many extracellular proteins to the Gram-positive bacterial cell wall. Here, we uncover the hitherto unknown function of this class of conserved proteins, which we name SafA, as a topological modulator of sortase in the oral Actinobacterium . Genetic deletion of induces cleavage and excretion of the otherwise predominantly membrane-bound SrtA in wild-type cells.

View Article and Find Full Text PDF

Sortase enzymes are attractive antivirulence drug targets that attach virulence factors to the surface of Staphylococcus aureus and other medically significant bacterial pathogens. Prior efforts to discover a useful sortase inhibitor have relied upon an in vitro activity assay in which the enzyme is removed from its native site on the bacterial surface and truncated to improve solubility. To discover inhibitors that are effective in inactivating sortases in vivo, we developed and implemented a novel cell-based screen using Actinomyces oris, a key colonizer in the development of oral biofilms.

View Article and Find Full Text PDF

Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism.

View Article and Find Full Text PDF

Assembly of pili on the gram-positive bacterial cell wall involves 2 conserved transpeptidase enzymes named sortases: One for polymerization of pilin subunits and another for anchoring pili to peptidoglycan. How this machine controls pilus length and whether pilus length is critical for cell-to-cell interactions remain unknown. We report here in , a key colonizer in the development of oral biofilms, that genetic disruption of its housekeeping sortase SrtA generates exceedingly long pili, catalyzed by its pilus-specific sortase SrtC2 that possesses both pilus polymerization and cell wall anchoring functions.

View Article and Find Full Text PDF

The widely conserved LytR-CpsA-Psr (LCP) family of enzymes in Gram-positive bacteria is known to attach glycopolymers, including wall teichoic acid, to the cell envelope. However, it is undetermined if these enzymes are capable of catalyzing glycan attachment to surface proteins. In the actinobacterium , an LCP homolog here named LcpA is genetically linked to GspA, a glycoprotein that is covalently attached to the bacterial peptidoglycan by the housekeeping sortase SrtA.

View Article and Find Full Text PDF

Posttranslocational protein folding in the Gram-positive biofilm-forming actinobacterium is mediated by a membrane-bound thiol-disulfide oxidoreductase named MdbA, which catalyzes oxidative folding of nascent polypeptides transported by the Sec translocon. Reoxidation of MdbA involves a bacterial itamin epxide eductase (VKOR)-like protein that contains four cysteine residues, C93/C101 and C175/C178, with the latter forming a canonical CXXC thioredoxin-like motif; however, the mechanism of VKOR-mediated reoxidation of MdbA is not known. We present here a topological view of the membrane-spanning protein VKOR with these four exoplasmic cysteine residues that participate in MdbA reoxidation.

View Article and Find Full Text PDF

The Gram-positive cell envelope serves as a molecular platform for surface display of capsular polysaccharides, wall teichoic acids (WTAs), lipoteichoic acids (LTAs), lipoproteins, surface proteins and pili. WTAs, LTAs, and sortase-assembled pili are a few features that make the Gram-positive cell envelope distinct from the Gram-negative counterpart. Interestingly, a set of LytR-CpsA-Psr family proteins, found in all Gram-positives but limited to a minority of Gram-negative organisms, plays divergent functions, while decorating the cell envelope with glycans.

View Article and Find Full Text PDF

Unlabelled: The Gram-positive bacterium Actinomyces oris, a key colonizer in the development of oral biofilms, contains 18 LPXTG motif-containing proteins, including fimbrillins that constitute two fimbrial types critical for adherence, biofilm formation, and polymicrobial interactions. Export of these protein precursors, which harbor a signal peptide, is thought to be mediated by the Sec machine and require cleavage of the signal peptide by type I signal peptidases (SPases). Like many Gram-positive bacteria, A.

View Article and Find Full Text PDF

In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e.

View Article and Find Full Text PDF

The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI) genes. These genes are essential for this pathogen's virulence and survival within host cells. Our goal was to determine if an intracellular metabolite modulate these protein/protein interactions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionldcmis28oo5unmetup380s7578mld4iv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once