Publications by authors named "Sara Cregeen"

Article Synopsis
  • - Respiratory syncytial virus (RSV) and human noroviruses (HuNoV) are major pathogens that cause respiratory and gastrointestinal infections respectively, making it essential to generate full-length genome sequences for studying their diversity and tracking variants.
  • - The study developed oligonucleotide probe sets from numerous viral isolate sequences, which were utilized in a capture enrichment sequencing workflow to analyze samples, significantly improving the quality of viral genome recovery.
  • - The results showed that over 99% of RSV genomes and over 96% of HuNoV genomes were complete post-capture, demonstrating the effectiveness of this method for comprehensive genome sequencing and monitoring emerging variants.
View Article and Find Full Text PDF
Article Synopsis
  • RSV infection in immunocompromised individuals, particularly hematopoietic stem cell transplant (HCT) patients, can lead to severe illness and death, highlighting the need for understanding how the immune environment affects viral behavior.
  • The study used whole genome sequencing of RSV in HCT patients with varying clearance times of the virus, revealing genetic variation primarily in the G and F genes, with notable mutations linked to longer viral shedding and possible immune evasion.
  • Findings emphasize the importance of monitoring RSV genetic changes in these patients, as mutations could affect future treatments and vaccine effectiveness.
View Article and Find Full Text PDF

Background: Tracking infectious diseases at the community level is challenging due to asymptomatic infections and the logistical complexities of mass surveillance. Wastewater surveillance has emerged as a valuable tool for monitoring infectious disease agents including SARS-CoV-2 and Mpox virus. However, detecting the Mpox virus in wastewater is particularly challenging due to its relatively low prevalence in the community.

View Article and Find Full Text PDF
Article Synopsis
  • Babies get a lot of bacteria right after they're born, which helps them stay healthy, but scientists know less about the viruses that interact with these bacteria.
  • Researchers studied DNA from thousands of samples taken from kids in different countries to learn how these viruses (called phages) and bacteria develop together.
  • They found that each kid has many different phages that change often, while the bacteria they carry become more stable, and understanding how these phages and bacteria work together could help improve health, especially for kids who need special care.
View Article and Find Full Text PDF

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2.

View Article and Find Full Text PDF

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2.

View Article and Find Full Text PDF

Background: Cryptosporidium parvum is an apicomplexan parasite commonly found across many host species with a global infection prevalence in human populations of 7.6%. Understanding its diversity and genomic makeup can help in fighting established infections and prohibiting further transmission.

View Article and Find Full Text PDF

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers.

View Article and Find Full Text PDF

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers.

View Article and Find Full Text PDF

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers.

View Article and Find Full Text PDF

Verticillium wilt has become a serious threat to hop production in Europe due to outbreaks of lethal wilt caused by a highly virulent strain of . In order to enhance our understanding of resistance mechanisms, the fungal colonization patterns and interactions of resistant and susceptible hop cultivars infected with were analysed in time course experiments. Quantification of fungal DNA showed marked differences in spatial and temporal fungal colonization patterns in the two cultivars.

View Article and Find Full Text PDF

Hop plant (Humulus lupulus L.), cultivated primarily for its use in the brewing industry, is faced with a variety of diseases, including severe vascular diseases, such as Verticillium wilt, against which no effective protection is available. The understanding of disease resistance with tools such as differentially expressed gene studies is an important objective of plant defense mechanisms.

View Article and Find Full Text PDF