Publications by authors named "Sara Coulup"

To improve pironetin's metabolic stability we prepared four analogs by replacing its C12-14 segment with an aryl group. The antiproliferative activity of phenyl analog 4 was reduced two-fold and dihydroxy-4-fluorophenyl analog 5 was slightly more effective against OVCAR5 and A2780 ovarian cancer cell lines compared with the parent compound pironetin (1). The activity of 4-fluorophenyl analog 6 was reduced 3-fold in both cell lines.

View Article and Find Full Text PDF

Molecules that bind to tubulin and disrupt tubulin dynamics are known as microtubule targeting agents. Treatment with a microtubule targeting agent leads to cell cycle arrest followed by apoptosis. Tubulin inhibitors have been highly effective in the clinical treatment of a variety of tumors and are being investigated for treatment of several other diseases.

View Article and Find Full Text PDF

Pironetin, the only crystallographically confirmed natural product to target α-tubulin, displays potent cytotoxic activity against sensitive and resistant A2780 ovarian cancer cell lines but is only marginally active in vivo. We now report that pironetin has a short half-life (<7 min) in human liver microsomes, suggesting that its limited in vivo efficacy is due to rapid metabolism. Further, we describe the discovery of epoxypironetin as pironetin's major metabolite in human liver microsomes.

View Article and Find Full Text PDF

Persistent fibrosis in multiple organs is the hallmark of systemic sclerosis (SSc). Recent genetic and genomic studies implicate TLRs and their damage-associated molecular pattern (DAMP) endogenous ligands in fibrosis. To test the hypothesis that TLR4 and its coreceptor myeloid differentiation 2 (MD2) drive fibrosis persistence, we measured MD2/TLR4 signaling in tissues from patients with fibrotic SSc, and we examined the impact of MD2 targeting using a potentially novel small molecule.

View Article and Find Full Text PDF

A series of novel, saccharin-based antagonists have been identified for the interferon signaling pathway. Through in vitro high-throughput screening with the Colorado Center for Drug Discovery (C2D2) Pilot Library, we identified hit compound 1, which was the basis for extensive structure-activity relationship studies. Our efforts produced a lead anti-inflammatory compound, tert-butyl N-(furan-2-ylmethyl)-N-{4-[(1,1,3-trioxo-2,3-dihydro-1λ(6),2-benzothiazol-2-yl)methyl]benzoyl}carbamate CU-CPD103 (103), as a potent inhibitor using an established nitric oxide (NO) signaling assay.

View Article and Find Full Text PDF

The trimer of a bradykinin derivative displayed a more than five-fold increase in binding affinity for phosphatidylserine-enriched nanovesicles as compared to its monomeric precursor. The nanovesicle selection is directly correlated with multivalency, which amplifies the electrostatic attraction. This strategy may lead to the development of novel molecular probes for detecting highly curved membrane bilayers.

View Article and Find Full Text PDF