Publications by authors named "Sara Conde-Berriozabal"

Article Synopsis
  • The study investigates the role of specific striatal circuits in motor control and behavior in both healthy and Huntington's Disease (HD) mice, focusing on the direct and indirect pathways from the dorsolateral (DLS) and dorsomedial striatum (DMS).
  • Optogenetic stimulation of these pathways in wild type mice showed slight improvements in locomotion and motor learning but did not affect exploratory behavior.
  • In contrast, the same stimulation in HD mice did not produce any behavioral changes, suggesting that targeting cortico-striatal circuits may be a more effective approach for treating motor symptoms in HD rather than focusing solely on striatal output pathways.
View Article and Find Full Text PDF

Chorea-acanthocytosis (ChAc) is an inherited neurodegenerative movement disorder caused by VPS13A gene mutations leading to the absence of protein expression. The striatum is the most affected brain region in ChAc patients. However, the study of the VPS13A function in the brain has been poorly addressed.

View Article and Find Full Text PDF

Early and progressive cortico-striatal circuit alterations have been widely characterized in Huntington's disease (HD) patients. Cortical premotor area, M2 cortex in rodents, is the most affected cortical input to the striatum from early stages in patients and is associated to the motor learning deficits present in HD mice. Yet, M2 cortex sends additional long-range axon collaterals to diverse output brain regions beyond basal ganglia.

View Article and Find Full Text PDF

The reciprocal connectivity between the medial prefrontal cortex (mPFC) and the dorsal raphe nucleus (DR) is involved in mood control and resilience to stress. The infralimbic subdivision (IL) of the mPFC is the rodent equivalent of the ventral anterior cingulate cortex, which is intimately related to the pathophysiology/treatment of major depressive disorder (MDD). Boosting excitatory neurotransmission in the IL-but not in the prelimbic cortex, PrL-evokes depressive-like or antidepressant-like behaviors in rodents, which are associated with changes in serotonergic (5-HT) neurotransmission.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the dopaminergic system is crucial for studying neurological disorders, as dopamine receptors play a key role in regulating important bodily functions.
  • Current methods to explore these dopaminergic pathways have limitations like specificity and need for genetic changes.
  • Azodopa, a new photoswitchable ligand, allows for precise, light-controlled activation of dopamine receptors in living organisms, potentially enhancing research and treatment of dopaminergic conditions.
View Article and Find Full Text PDF

Huntington's disease (HD) is a neurological disorder characterized by motor disturbances. HD pathology is most prominent in the striatum, the central hub of the basal ganglia. The cerebral cortex is the main striatal afferent, and progressive cortico-striatal disconnection characterizes HD.

View Article and Find Full Text PDF