T cell bispecific antibodies (TCBs) are a promising new class of therapeutics for relapsed/refractory multiple myeloma. A frequently observed, yet incompletely understood effect of this treatment is the transient reduction of circulating T cell counts, also known as T cell margination (TCM). After administration of the GPRC5D-targeting TCB forimtamig (RG6234), TCM occurred in patients and correlated with cytokine release and soluble B cell maturation antigen decrease.
View Article and Find Full Text PDFAdvancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research.
View Article and Find Full Text PDFExpansion and differentiation of antigen-experienced PD-1TCF-1 stem-like CD8 T cells into effector cells is critical for the success of immunotherapies based on PD-1 blockade. Hashimoto et al. have shown that, in chronic infections, administration of the cytokine interleukin (IL)-2 triggers an alternative differentiation path of stem-like T cells towards a distinct population of 'better effector' CD8 T cells similar to those generated in an acute infection.
View Article and Find Full Text PDFT-cell bispecific antibodies (TCB) are engineered molecules that bind both the T-cell receptor and tumor-specific antigens. Epidermal growth factor receptor variant III (EGFRvIII) mutation is a common event in glioblastoma (GBM) and is characterized by the deletion of exons 2-7, resulting in a constitutively active receptor that promotes cell proliferation, angiogenesis, and invasion. EGFRvIII is expressed on the surface of tumor cells and is not expressed in normal tissues, making EGFRvIII an ideal neoantigen target for TCBs.
View Article and Find Full Text PDFTumors are populated by a multitude of immune cell types with varied phenotypic and functional properties, which can either promote or inhibit anti-tumor responses. Appropriate localization and function of these cells within tumors is critical for protective immunity, with CD8 T cell infiltration being a biomarker of disease outcome and therapeutic efficacy. Recent multiplexed imaging approaches have revealed highly complex patterns of localization for these immune cell subsets and the generation of distinct tumor microenvironments (TMEs), which can vary among cancer types, individuals, and within individual tumors.
View Article and Find Full Text PDFSimlukafusp alfa (FAP-IL2v, RO6874281/RG7461) is an immunocytokine comprising an antibody against fibroblast activation protein α (FAP) and an IL-2 variant with a retained affinity for IL-2Rβγ > IL-2 Rβγ and abolished binding to IL-2 Rα. Here, we investigated the immunostimulatory properties of FAP-IL2v and its combination with programmed cell death protein 1 (PD-1) checkpoint inhibition, CD40 agonism, T cell bispecific and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. The binding and immunostimulatory properties of FAP-IL2v were investigated and compared with FAP-IL2wt.
View Article and Find Full Text PDFT-cell Bispecific Antibodies (TCBs) elicit anti-tumor responses by cross-linking T-cells to tumor cells and mediate polyclonal T-cell expansion that is independent of T-cell receptor specificity. TCBs thus offer great promise for patients who lack antigen-specific T-cells or have non-inflamed tumors, which are parameters known to limit the response of checkpoint inhibitors. The current study deepens the understanding of TCB mode of action and elaborates on one of the adaptive resistance mechanisms following its treatment in humanized mice and syngeneic pre-clinical tumor models.
View Article and Find Full Text PDFEndogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL.
View Article and Find Full Text PDFDespite promising clinical activity, T-cell-engaging therapies including T-cell bispecific antibodies (TCB) are associated with severe side effects requiring the use of step-up-dosing (SUD) regimens to mitigate safety. Here, we present a next-generation CD20-targeting TCB (CD20-TCB) with significantly higher potency and a novel approach enabling safer administration of such potent drug. We developed CD20-TCB based on the 2:1 TCB molecular format and characterized its activity preclinically.
View Article and Find Full Text PDFCEA TCB is a novel T-cell-bispecific (TCB) antibody targeting the carcinoembryonic antigen (CEA) expressed on tumor cells and the CD3 epsilon chain (CD3e) present on T cells, which is currently in Phase 1 clinical trials (NCT02324257) for the treatment of CEA-positive solid tumors. Because the human CEA (hCEA) binder of CEA TCB does not cross-react with cynomolgus monkey and CEA is absent in rodents, alternative nonclinical safety evaluation approaches were considered. These included the development of a cynomolgus monkey cross-reactive homologous (surrogate) antibody (cyCEA TCB) for its evaluation in cynomolgus monkey and the development of double-transgenic mice, expressing hCEA and human CD3e (hCEA/hCD3e Tg), as a potential alternative species for nonclinical safety studies.
View Article and Find Full Text PDFPurpose: CEA TCB (RG7802, RO6958688) is a novel T-cell bispecific antibody, engaging CD3ε upon binding to carcinoembryonic antigen (CEA) on tumor cells. Containing an engineered Fc region, conferring an extended blood half-life while preventing side effects due to activation of innate effector cells, CEA TCB potently induces tumor lysis in mouse tumors. Here we aimed to characterize the pharmacokinetic profile, the biodistribution, and the mode of action of CEA TCB by combining in vitro and in vivo fluorescence imaging readouts.
View Article and Find Full Text PDFPurpose: CEA TCB is a novel IgG-based T-cell bispecific (TCB) antibody for the treatment of CEA-expressing solid tumors currently in phase I clinical trials (NCT02324257). Its format incorporates bivalent binding to CEA, a head-to-tail fusion of CEA- and CD3e-binding Fab domains and an engineered Fc region with completely abolished binding to FcγRs and C1q. The study provides novel mechanistic insights into the activity and mode of action of CEA TCB.
View Article and Find Full Text PDFUnderstanding the molecular aberrations involved in the development and progression of metastatic melanoma (MM) is essential for a better diagnosis and targeted therapy. We identified breast cancer suppressor candidate-1 (BCSC-1) as a novel tumor suppressor in melanoma. BCSC-1 expression is decreased in human MM, and its ectopic expression in MM-derived cell lines blocks tumor formation in vivo and melanoma cell proliferation in vitro while increasing cell migration.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) controls T-cell differentiation in response to polarizing cytokines. We previously found that mTOR blockade by rapamycin (RAPA) delays the G1-S cell cycle transition and lymphocyte proliferation. Here, we report that both mTOR complex 1 and mTOR complex 2 are readily activated following TCR/CD28 engagement and are critical for early expression of Ifng, Il4 and Foxp3, and for effector T cell differentiation in the absence of polarizing cytokines.
View Article and Find Full Text PDFImmunization with recombinant lentivector elicits higher frequencies of tumor antigen-specific memory CD8+ T cells than peptide-based vaccines. This finding correlates with our observation that, upon recombinant lentivector immunization, a higher fraction of antigen-specific effector CD8+ T cells does not down-regulate the expression of the survival/memory marker interleukin-7 receptor alpha chain (IL-7Ralpha). Here we show that, surprisingly, higher expression of IL-7Ralpha on recombinant lentivector-induced effector CD8+ T cells does not result in the up-regulation of survival molecules, such as Bcl-2.
View Article and Find Full Text PDFExpression of the cancer/germ-line antigen NY-ESO-1 by tumors elicits spontaneous humoral and cellular immune responses in some cancer patients. Development of vaccines capable of stimulating such comprehensive immune responses is desirable. We have produced recombinant lentivectors directing the intracellular synthesis of NY-ESO-1 (rLV/ESO) and have analyzed the in vivo immune response elicited by this vector.
View Article and Find Full Text PDFInt Rev Immunol
January 2007
Murine models have been instrumental in defining the basic mechanisms of antitumor immunity. Most of these mechanisms have since been shown to operate in humans as well. Based on these similarities, active vaccination strategies aimed at eliciting antitumor T-cell responses have been elaborated and successfully implemented in various mouse models.
View Article and Find Full Text PDFIn HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules.
View Article and Find Full Text PDFProliferation of Ag-specific T cells is central to the development of protective immunity. The concomitant stimulation of the TCR and CD28 programs resting T cells to IL-2-driven clonal expansion. We report that a prolonged occupancy of the TCR and CD28 bypasses the need for autocrine IL-2 secretion and sustains IL-2-independent lymphocyte proliferation.
View Article and Find Full Text PDF